首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The lymphocyte-specific kinase Lck is a member of the Src family of non-receptor tyrosine kinases. Lck catalyzes the initial phosphorylation of T-cell receptor components that is necessary for signal transduction and T-cell activation. On the basis of both biochemical and genetic studies, Lck is considered an attractive cell-specific target for the design of novel T-cell immunosuppressants. To date, the lack of detailed structural information on the mode of inhibitor binding to Lck has limited the discovery of novel Lck inhibitors. RESULTS: We report here the high-resolution crystal structures of an activated Lck kinase domain in complex with three structurally distinct ATP-competitive inhibitors: AMP-PNP (a non-selective, non-hydrolyzable ATP analog); staurosporine (a potent but non-selective protein kinase inhibitor); and PP2 (a potent Src family selective protein tyrosine kinase inhibitor). Comparison of these structures reveals subtle but important structural changes at the ATP-binding site. Furthermore, PP2 is found to access a deep, hydrophobic pocket near the ATP-binding cleft of the enzyme; this binding pocket is not occupied by either AMP-PNP or staurosporine. CONCLUSIONS: The potency of staurosporine against Lck derives in part from an induced movement of the glycine-rich loop of the enzyme upon binding of this ligand, which maximizes the van der Waals interactions present in the complex. In contrast, PP2 binds tightly and selectively to Lck and other Src family kinases by making additional contacts in a deep, hydrophobic pocket adjacent to the ATP-binding site; the amino acid composition of this pocket is unique to Src family kinases. The structures of these Lck complexes offer useful structural insights as they demonstrate that kinase selectivity can be achieved with small-molecule inhibitors that exploit subtle topological differences among protein kinases.  相似文献   

2.
Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases.  相似文献   

3.
We recently reported a chemical genetic method for generating bivalent inhibitors of protein kinases. This method relies on the use of the DNA repair enzyme O(6)-alkylguanine-DNA alkyltransferase (AGT) to display an ATP-competitive inhibitor and a ligand that targets a secondary binding domain. With this method potent and selective inhibitors of the tyrosine kinases SRC and ABL were identified. Here, we dissect the molecular determinants of the potency and selectivity of these bivalent ligands. Systematic analysis of ATP-competitive inhibitors with varying linker lengths revealed that SRC and ABL have differential sensitivities to ligand presentation. Generation of bivalent constructs that contain ligands with differential affinities for the ATP-binding sites and SH3 domains of SRC and ABL demonstrated the modular nature of inhibitors based on the AGT scaffold. Furthermore, these studies revealed that the interaction between the SH3 domain ligand and the kinase SH3 domain is the major selectivity determinant amongst closely-related tyrosine kinases. Finally, the potency of bivalent inhibitors against distinct phospho-isoforms of SRC was determined. Overall, these results provide insight into how individual ligands can be modified to provide more potent and selective bivalent inhibitors of protein kinases.  相似文献   

4.
Selective inhibitors of tyrosine kinases, tyrphostin 23 and genistein, produced concentration-dependent inhibition of voltage-operated calcium channel currents in vascular smooth muscle cells isolated from rabbit ear artery. The potency of these two structurally dissimilar inhibitors was similar to that reported for their action as inhibitors of tyrosine kinases. Daidzein, an inactive analogue of genistein, had little inhibitory effect on calcium channel currents at concentrations below 300 microM consistent with an action of these agents at a tyrosine kinase. However, tyrphostin 1, a reportedly less active tyrphostin derivative, also inhibited calcium channel currents with a potency similar to tyrphostin 23. These findings suggest that voltage-operated calcium channels in vascular smooth muscle may be modulated by endogenous tyrosine kinase(s) which display different sensitivities to inhibitors compared with the epidermal growth factor (EGF) receptor. Alternatively the possibility of direct blocking actions of these inhibitors at voltage-operated calcium channels cannot be excluded.  相似文献   

5.
Dual inhibitors of the closely related receptor tyrosine kinases insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) are promising therapeutic agents in cancer. Here, we report an unusually selective class of dual inhibitors of IGF-1R and IR identified in a parallel screen of known kinase inhibitors against a panel of 300 human protein kinases. Biochemical and structural studies indicate that this class achieves its high selectivity by binding to the ATP-binding pocket of inactive, unphosphorylated IGF-1R/IR and stabilizing the activation loop in a native-like inactive conformation. One member of this compound family was originally reported as an inhibitor of the serine/threonine kinase ERK, a kinase that is distinct in the structure of its unphosphorylated/inactive form from IR/IGF-1R. Remarkably, this compound binds to the ATP-binding pocket of ERK in an entirely different conformation to that of IGF-1R/IR, explaining the potency against these two structurally distinct kinase families. These findings suggest a novel approach to polypharmacology in which two or more unrelated kinases are inhibited by a single compound that targets different conformations of each target kinase.  相似文献   

6.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

7.
8.
Topoisomerases (Topos) are very important protein targets for drug design in cancer treatment. Human Topo type IIα (hTopo IIα) has been widely studied experimentally and theoretically. Here, we performed protein rigid/flexible side-chain docking to study a set of thirty-nine 3-substituted-2,6-piperazindiones (labelled 1a, (R)-[(2–20)a] and (S)-[(2–20)b]) derived from α-amino acids. To explain the ligand–protein complexes at the electronic level [using the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) energies], density functional theory calculations were carried out. Finally, to show adenosine triphosphate (ATP) binding-site constituents, the Q-SiteFinder program was used. The docking results showed that all of the test compounds bind to the ATP-binding site on hTopo IIα. Recognition is mediated by the formation of several hydrogen bond acceptors or donators. This site was the largest (631 Å3) according to the Q-SiteFinder program. When using the protein rigid docking protocol, compound 13a derived from (R)-Lys showed the highest affinity. However, when a flexible side-chain docking protocol was used, the compound with the highest affinity was 16a, derived from (R)-Trp. Frontier molecular orbital studies showed that the HOMO of the ligand interacts with the LUMO located at side-chain residues from the protein-binding site. The HOMO of the binding site interacts with the LUMO of the ligand. We conclude that some ligand properties including the hindrance effect, hydrogen bonds, π–π interactions and stereogenic centres are important for the ligand to be recognised by the ATP-binding site of hTopo IIα.  相似文献   

9.
Protein kinases are now the second largest group of drug targets, and most protein kinase inhibitors in clinical development are directed towards the ATP-binding site. However, these inhibitors must compete with high intracellular ATP concentrations and they must discriminate between the ATP-binding sites of all protein kinases as well the other proteins that also utilise ATP. It would therefore be beneficial to target sites on protein kinases other than the ATP-binding site. This review describes the discovery, characterisation and use of peptide inhibitors of protein kinases. In many cases, the development of these peptides has resulted from an understanding of the specific protein-binding partners for a particular protein kinase. In addition, novel peptide sequences have been discovered in library screening approaches and have provided new leads in the discovery and/or design of peptide inhibitors of protein kinases. These approaches are therefore providing exciting new opportunities in the development of ATP non-competitive inhibitors of protein kinases.  相似文献   

10.
Previously we found that short peptides surrounding major autophosphorylation sites of EGFR (VPEY(1068)INQ, DY(1148)QQD, and ENAEY(1173)LR) suppress phosphorylation of purified EGFR to 30-50% at 4000 microM. In an attempt to improve potencies of the peptides, we modified the sequences by substituting various amino acids for tyrosine or by substituting Gln and Asn for Glu and Asp, respectively. Among the modified peptides, Asp/Asn- and Glu/Gln-substitution in DYQQD (NYQQN) and ENAEYLR (QNAQYLR), respectively, improved inhibitory potencies. The inhibitory potency of NYQQN was not affected by the concentration of ATP, while that of QNAQYLR was affected. Docking simulations showed different mechanisms of inhibition for the peptides: inhibition by binding to the ATP-binding site (QNAQYLR) and inhibition by binding to a region surrounded by alphaC, the activation loop, and the catalytic loop and interfering with the catalytic reaction (NYQQN). The inhibitory potency of NYQQN for insulin receptor drastically decreased, whereas QNAQYLR inhibited autophosphorylation of insulin receptor as well as EGFR. In conclusion, NYQQN is not an ATP-competitive inhibitor and the binding site of this peptide appears to be novel as a tyrosine kinase inhibitor. NYQQN could be a promising seed for the development of anti-cancer drugs having specificity for EGFR.  相似文献   

11.
Several indole esters were tested as inhibitors of tyrosine kinase p60(c-Src). Compound (4) was found fairly active against the enzyme with IC50 = 1.34 microM. DOCK methodology was used to asses our inhibitors for their inhibitory potency against tyrosine kinase. The docking results showed that compounds (4), (25) and (26) were bound to the active site of the enzyme Lys 295 of p60(c-Src) tyrosine kinase. Both activity and docking studies showed a parallel result, with compound (4) having a better interaction with the enzyme active site and also greater activity than the other compounds, indicating a potential role as new lead inhibitor.  相似文献   

12.
Histidine kinases of bacterial two-component systems are promising antibacterial targets. Despite their varied, numerous roles, enzymes in the histidine kinase superfamily share a catalytic core that may be exploited to inhibit multiple histidine kinases simultaneously. Characterized by the Bergerat fold, the features of the histidine kinase ATP-binding domain are not found in serine/threonine and tyrosine kinases. However, because each kinase family binds the same ATP substrate, we sought to determine if published serine/threonine and tyrosine kinase inhibitors contained scaffolds that would also inhibit histidine kinases. Using select assays, 222 inhibitors from the Roche Published Kinase Set were screened for binding, deactivation, and aggregation of histidine kinases. Not only do the results of our screen support the distinctions between ATP-binding domains of different kinase families, but the lead molecule identified also presents inspiration for further histidine kinase inhibitor development.  相似文献   

13.
Protein kinase D (PKD) has emerged as a potential therapeutic target in multiple pathological conditions, including cancer and heart diseases. Potent and selective small molecule inhibitors of PKD are valuable for dissecting PKD-mediated cellular signaling pathways and for therapeutic application. In this study, we evaluated a targeted library of 235 small organic kinase inhibitors for PKD1 inhibitory activity at a single concentration. Twenty-eight PKD inhibitory chemotypes were identified and six exhibited excellent PKD1 selectivity. Five of the six lead structures share a common scaffold, with compound 139 being the most potent and selective for PKD vs PKC and CAMK. Compound 139 was an ATP-competitive PKD1 inhibitor with a low double-digit nanomolar potency and was also cell-active. Kinase profiling analysis identified this class of small molecules as pan-PKD inhibitors, confirmed their selectivity again PKC and CAMK, and demonstrated an overall favorable selectivity profile that could be further enhanced through structural modification. Furthermore, using a PKD homology model based on similar protein kinase structures, docking modes for compound 139 were explored and compared to literature examples of PKD inhibition. Modeling of these compounds at the ATP-binding site of PKD was used to rationalize its high potency and provide the foundation for future further optimization. Accordingly, using biochemical screening of a small number of privileged scaffolds and computational modeling, we have identified a new core structure for highly potent PKD inhibition with promising selectivity against closely related kinases. These lead structures represent an excellent starting point for the further optimization and the design of selective and therapeutically effective small molecule inhibitors of PKD.  相似文献   

14.
Inositol hexakisphosphate kinases (IP6Ks) have been increasingly studied as therapeutically interesting enzymes. IP6K isoform specific knock-outs have been used to successfully explore inositol pyrophosphate physiology and related pathologies. A pan-IP6K inhibitor, N2-(m-trifluorobenzyl)-N6-(p-nitrobenzyl) purine (TNP), has been used to confirm phenotypes observed in genetic knock-out experiments; however, it suffers by having modest potency and poor solubility making it difficult to handle for in vitro applications in the absence of DMSO. Moreover, TNP’s pan-IP6K inhibitory profile does not inform which IP6K isoform is responsible for which phenotypes. In this report we describe a series of purine-based isoform specific IP6K1 inhibitors. The lead compound was identified after multiple rounds of SAR and has been found to selectively inhibit IP6K1 over IP6K2 or IP6K3 using biochemical and biophysical approaches. It also boasts increased solubility and IP6K1 potency over TNP. These new compounds are useful tools for additional assay development and exploration of IP6K1 specific biology.  相似文献   

15.
16.
The identification and exploration of a novel, potent and selective series of N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amide inhibitors of JNK2 and JNK3 kinases is described. Compounds 5a and 11a were identified as potent inhibitors of JNK3 (pIC50 6.7 and 6.6, respectively), with essentially equal potency against JNK2 (pIC50 6.5). Selectivity within the mitogen-activated protein kinase (MAPK) family, against JNK1, p38alpha and ERK2, was observed for the series. X-ray crystallography of 5e and 8a in JNK3 revealed a unique binding mode, with the 3-cyano substituent forming an H-bond acceptor interaction with the hinge region of the ATP-binding site.  相似文献   

17.
A new series of nitro or amino substituted pyrazolo[4,3-a]phenanthridines was synthesized in 6 steps from 5-bromo-6-nitroindazole. The evaluation of their inhibitory potency toward Pim kinases demonstrated that the nitro series could be considered as an interesting starting point for the development of new Pim kinase inhibitors, especially Pim-3. A preferential binding mode was suggested by molecular modeling experiments for nitro series and Pim-1/Pim-3 ATP-binding sites. Moreover, the most active compounds exhibited antiproliferative activities toward PC3 cells in the micromolar range.  相似文献   

18.
Estrogens play an important role in the development of breast cancer. Inhibiting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1)--the enzyme responsible for the last step in the biosynthesis of the most potent estrogen, estradiol (E2)--would thus allow hindering the growth of estrogen-sensitive tumors. Based on a previous study identifying 16beta-benzyl-E2 (1) as a lead compound for developing inhibitors of the transformation of estrone (E1) into E2, we modified the benzyl group of 1 to improve its inhibitory activity. Three strategies were also devised to produce compounds with less residual estrogenic activity: (1) replacing the hydroxy group by a hydrogen at position 3 (C3); (2) adding a methoxy at C2; and (3) adding an alkylamide chain known to be antiestrogenic at C7. In order to test the inhibitory potency of the new compounds, we used the human breast cancer cell line T-47D, which exerts a strong endogenous 17beta-HSD1 activity. In this intact cell model, 16beta-m-carbamoylbenzyl-E2 (4m) emerged as a potent inhibitor of 17beta-HSD1 with an IC50 value of 44 nM for the transformation of [14C]-E1 (60 nM) into [14C]-E2 (24-h incubation). In another assay aimed at assessing the unwanted estrogenic activity, a 10-day treatment with 4m at a concentration of 0.5 microM induced some proliferation (38%) of T-47D estrogen-sensitive (ER+) breast cancer cells. Interestingly, when 4m (0.5 microM) was given with E1 (0.1 nM) in a 10-day treatment, it blocked 62% of the T-47D cell proliferation induced by E1 after its reduction to E2 by 17beta-HSD1. Thus, in addition to generating useful structure-activity relationships for the development of 17beta-HSD1 inhibitors, our study demonstrates that using such inhibitors is a valuable strategy for reducing the level of E2 and consequently its proliferative effect in T-47D ER+ breast cancer cells.  相似文献   

19.
Inspired by that the multi-target inhibitors against receptor tyrosine kinases (RTKs) have significantly improved the effect of clinical treatment for cancer, and based on the chemical structure of Linifanib (ABT-869, Abbott), two series of diaryl-ureas with novel isoxazol[3,4-b]pyridine-3-amino-structure were designed and synthesized as multi-target inhibitors against RTKs. The preliminary biological evaluation showed that several compounds exhibited comparable potency with Linifanib. Compound S21 was identified as the most potent inhibitor against Fms-like tyrosine kinase 3 (FLT-3), kinase insert domain containing receptor (KDR) and platelet-derived growth factor receptor β (PDGFR-β) with its IC50 values were 4?nM, 3?nM and 8?nM respectively, it also showed potent inhibitory activities against several cancer cells.  相似文献   

20.
BACKGROUND: Many cellular signal transduction cascades have protein kinases as critical components. Small molecule protein kinase inhibitors can be effective as laboratory probes and drugs. Methods that allow two or more kinases to be evaluated simultaneously for inhibition by a small molecule would allow unequivocal tests of specificity and selectivity of action of the small molecule. METHODS: Two hexahistidine-tagged activin receptor-like kinases were expressed in E. coli, purified, and bound to nickel beads. A fluorescent kinase ligand (F-KL) that binds to the ATP-binding site of these kinases with nanomolar affinity was developed. Binding of F-KL with kinase on the bead made the beads bright, and inhibitors decreased the brightness. RESULTS: A test panel of 17 nonfluorescent kinase inhibitors, spanning two orders of magnitude affinity for the kinases, gave K(d) values for the kinases that correlated well with a fluorescence polarization assay. Results were obtained for the kinases in duplex, using an autosampler to send beads from a 96-well plate to a flow cytometer in a format suitable for high throughput screening. CONCLUSIONS: Inhibitors of kinases can be measured in duplex in a high throughput format by flow cytometry, if a suitable fluorescent ligand is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号