首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly purified preparations of rat heart ornithine decarboxylase are readily phosphorylated by rat liver type-2 casein kinase-TS at the same 54 KDa protein band which is also radiolabeled by 3H-DFMO. The reaction, which is stimulated by polylysine leads to the incorporation of up to 0.8 mol P/mol ornithine decarboxylase at seryl residue(s) included in a single 8.6 KDa CNBr fragment. Partially purified preparations of ornithine decarboxylase contain a type-2 casein kinase which promotes the phosphorylation of ornithine decarboxylase at the same CNBr fragment affected by rat liver casein kinase-TS.  相似文献   

2.
Casein kinase II from a virally-transformed macrophage cell line (RAW264) was purified by a sequential DEAE, Procion Red, phosvitin-Sepharose and heparin-Sepharose chromatography. With [tau-32P]GTP as a phosphate donor and casein as a substrate, the kinase was stimulated by polyamines and inhibited by heparin. The purified kinase had a specific activity of 1137 nmol/min/mg protein and exhibited three major protein bands of 40 K, 35 K, and 25 K. Under non-denaturing conditions in 50 mM Tris-50 mM NaCl the enzyme was eluted as a single peak with molecular weight of 110 K. Incubation of kinase in the presence of [tau-32P]GTP and Mg2+ resulted in phosphorylation of the 25 K protein band of the enzyme. In the presence of [tau-32P]GTP and Mg2+ the kinase was able to phosphorylate 55 K protein band in purified ornithine decarboxylase preparation from RAW264 cells and the rat-type II regulatory subunit of the cyclic AMP-dependent protein kinase.  相似文献   

3.
Phosphorylation of high mobility group protein 14 by casein kinase II   总被引:7,自引:0,他引:7  
Phosphorylation of chromosomal high mobility group (HMG) protein 14 by casein kinase II has been characterized. Two mol of 32P are incorporated per mol of bovine HMG 14. Kinetic analysis provided evidence for two distinct sites with apparent Km values of 14.5 and 134 microM and respective Vmax values of 0.17 and 0.68 mumol/min/mg casein kinase II. Tryptic peptide mapping identified two phosphorylated products, each with phosphoserine. Amino acid composition and sequence analysis demonstrate that the major high affinity phosphorylation site for casein kinase II is serine 89. This sequence located at the carboxyl-terminal of HMG 14 contains the primary sequence determinants for casein kinase II. On the basis of reverse-phase high performance liquid chromatography and amino acid analysis, HMG 14, serine 99 represents the low affinity phosphorylation site.  相似文献   

4.
Tropomyosin kinase is partially purified from 14-day-old chicken embryos using DEAE-cellulose, cellulose phosphate and gel filtration chromatography. The purest enzyme preparation consists of two major bands of Mr = 76,000 and 43,000 on SDS-polyacrylamide gel electrophoresis. The molecular weight of the enzyme is 250,000 determined by gel filtration chromatography. It phosphorylates casein and skeletal tropomyosin equally well but histone and phosvitin at a much slower rate. Smooth muscle myosin light chain, tropomyosin from platelet, erythrocyte and smooth muscle are not phosphorylated. The apparent Km for skeletal alpha-tropomyosin and ATP is 50 microM and 200 microM, respectively. Vmax varies between 100-300 nmol/min per mg depending on the purity of the preparation. Mg2+ and dithiothreitol are essential for activity but Ca+, calmodulin and cAMP are not required. The optimum temperature is 37 degrees C and optimum pH is about 7.5. Heparin, a potent inhibitor of casein kinase II, has no inhibitory effect on the enzyme. Similar tropomyosin kinase activity is not detected in skeletal muscle in adult rabbit and chicken. The tropomyosin kinase described here represents a hitherto uncharacterized kinase responsible for phosphorylation of tropomyosin in the chicken embryo.  相似文献   

5.
The purified insulin receptor kinase catalyzed the phosphorylation of native tubulin and microtubule-associated proteins (MAPs; MAP2, tau) on tyrosine residues. Insulin (10(-7) M) stimulated the reaction by 4-10-fold by increasing Vmax with little change in Km. alpha-Tubulin was preferred as a substrate for the kinase compared to beta-tubulin. MAP2 was found to be the best substrate among the cytoskeletal proteins tested; in the presence of insulin, the Vmax for MAP2 was 6.3 nmol/min/mg, its Km was 5.1 microM, and 1.7 mol of phosphate were incorporated per mol of MAP2. Under the same conditions used for this phosphorylation of tubulin and MAPs, actin and tropomyosin were very poorly phosphorylated. These data, coupled with previous evidence for potential functional relationships between insulin action and microtubules, raise the possibility that microtubule proteins may be cellular targets for the insulin receptor kinase.  相似文献   

6.
The nonapeptide DTDSEEEIR, corresponding to amino acid residues 78-86 of calmodulin, was synthesized, and its kinetics of phosphorylation by casein kinase 2 was examined. In the presence of 4 microM polylysine, the phosphorylation rate by casein kinase 2 was 16 times greater than that of synthetic substrate peptide RRREEETEEE reported previously, and almost 1 mol of 32p was incorporated per mol of nonapeptide in 60 min at 37 degrees C. The peptide was not phosphorylated by any other protein kinase. The Thr residue was phosphorylated by casein kinase 2, but Ser was not. The Km value of casein kinase 2 for the nonapeptide was 60 microM, comparable to that of casein, and Vmax for the nonapeptide was 4 times greater than that for casein. Addition of polylysine did not affect the Km value but markedly increased Vmax.  相似文献   

7.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

8.
Summary A 107 kDa (pp107) casein kinase G (ck-G) substrate has been purified from mouse and beef thyroid cytosol; ck-G was purified from beef thyroid cytosol. Ck-G and pp107 were found to co-elute on DEAE cellulose chromatography at approximately 300 mM NaCl. Ck-G and pp107 were separated by spermine-agarose affinity chromatography; ppl07 is eluted with a stepped gradient at 250 mM NaCl and ck-G is eluted at 500 mM NaCl. Ck-G was subsequently purified by casein-agarose and GTP-agarose affinity chromatography. The 107 kDa protein was purified using heparin-agarose affinity chromatography. Phosphorylation of purified pp107 by ck-G was stimulated by spermine (ED50 = 0.2 mM) and inhibited by low concentrations of heparin (0.1–5 µg/ml). The Km and Vmax for the reaction were 1.46 µM and 32.2 nmoles P transferred/20 min/mg protein, respectively; 1 mole pp107 incorporated 0.81 mole phosphorus. pp107 was found to be an acidic substrate with a pI of 3.87 and was absorbed to wheat-germ agglutinin-agarose. The specificity of pp107 phosphorylation was studied using diacylglycerol-activated calcium/phospholipid-dependent protein kinase C, calcium-activated calmodulin-dependent protein kinase, and the catalytic subunit of cAMP-dependent protein kinase A. Phosphorylation of pp107 by the other protein kinases tested never exceeded 4% of that of ck-G. Our data show that pp107 is an acidic glycoprotein which may serve as a high-affinity and specific substrate for ck-G.Abbreviations SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - ck-G Casein Kinase G (casein kinase II) - PK-C Diacylglycerol-Activated Calcium/phospholipid-Dependent Protein Kinase - PK-A cAMP-Dependent Protein Kinase - CAMPK Calcium-Activated Calmodulin-Dependent Protein Kinase - EGTA Ethylene Glycol Bis (B-aminoethylether)-N,N,N,N-tetraacetic Acid - PMSF Phenylmethyl Sulfonyl Floride - TCA Trichloroacetic Acid  相似文献   

9.
An inositol 1,4,5-trisphosphate 3-kinase purified from human platelets contains two major components, 53 and 36 kDa polypeptides. Each polypeptide expresses Ca2+/calmodulin-dependent enzymatic activity and is phosphorylated by an unidentified protein kinase in the enzyme preparation. The 36-kDa polypeptide may be further phosphorylated on serine residues by protein kinase C to a stoichiometry of 0.8 mole phosphate per mole of protein. Phosphorylation of the 36-kDa component is correlated with inhibition of the kinase activity; the inhibitory effect is dependent upon Ca2+ and phosphatidylserine/diolein and may be blocked by a selective peptide inhibitor of protein kinase C. Phosphorylation by protein kinase C decreases the Vmax of the enzyme from 160 to 28 nmol/mg/min; the Km (0.76 microM) is not altered. These data suggest that protein kinase C may negatively regulate inositol 1,4,5-trisphosphate 3-kinase activity in the human platelet.  相似文献   

10.
Intact pp60c-src, the cellular homologue of the transforming protein of Rous sarcoma virus, was purified from human platelets. The purified fractions also contained small amounts of a 54-kDa proteolytic degradation product of pp60c-src. We investigated some of the biochemical and kinetic properties of pp60c-src protein tyrosine kinase. Maximum kinase activity occurred at pH 6.5 and required a mixture of 2 mM Mn2+/Mg2+ as divalent cations. The enzyme most strongly phosphorylated casein, followed by enolase and alcohol dehydrogenase. The Km value for ATP was 4 microM for substrate phosphorylation and for autophosphorylation. Using casein, we determined a Vmax for substrate phosphorylation by pp60c-src in the range of 1.9-3.4 nmol.min-1.mg-1. Since the Vmax value for the purified 54-kDa fragment of pp60c-src was also included in this value, we conclude that proteolytic degradation of a 6-kDa fragment from the N-terminus of pp60c-src did not affect its kinase activity. Tryptic phosphopeptide analysis identified Tyr-416 as the major autophosphorylation site. Preincubation of purified pp60c-src with ATP increased the amount of autophosphorylation accompanied by an increase in Vmax, whereas the Km values were not altered. Our data directly demonstrate that autophosphorylation at Tyr-416 exerts, in contrast to phosphorylation at Tyr-527, a positive regulatory effect on the pp60c-src kinase activity.  相似文献   

11.
An analysis of the effects of polyamines on protein phosphorylation in cytosolic fractions of the pupal brain of Manduca sexta showed that spermine elicited an increase in casein phosphorylation in a dose-dependent manner (maximum three- to fourfold at 2.0 mM), whereas spermidine was less effective and putrescine was without effect. In contrast, with phosvitin as the exogenous substrate, higher doses of polyamines, especially spermine, inhibited phosphorylation. High salt conditions abolished the polyamine response. Cytosol protein kinase activity eluted from DEAE-cellulose at 0.2-0.3 M NaCl. This activity was enhanced in the presence of spermine, and inhibited in the presence of heparin (IC50 approximately equal to 30 ng/ml). The enzyme was characterized by a sedimentation coefficient of 6.5S, and a Stokes radius of 49 A, consistent with a Mr of 130,000. Both GTP (Km, 55 microM) and ATP (Km, 34 microM) were utilized as phosphoryl donors (Vmax for ATP being four-fold higher than that observed for GTP). These results indicate the presence in the insect brain of an enzyme very similar to vertebrate casein kinase II. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated that low concentrations of spermine (100 microM) strongly enhanced the phosphorylation of three high-molecular-weight cytosolic proteins (305,000, 340,000, and 360,000) localized in the insect nervous system.  相似文献   

12.
A phosphorylated analogue of DSIP at Ser7 has been shown to exist endogenously by immunochemical studies. An enzyme which could phosphorylate DSIP has not yet been identified. In the present study, we examined DSIP as a substrate for in vitro phosphorylation by casein kinase II. DSIP was phosphorylated by the enzyme with apparent Km and Vmax values of 20 mM and 90.9 nmol/min/mg protein, respectively. Both ATP and GTP were utilized as phosphoryl donors. Phosphorylation of DSIP was inhibited by heparin and enhanced by spermine. These results demonstrate that DSIP can serve as a possible substrate for casein kinase II in vitro.  相似文献   

13.
Two major ionic forms of ornithine decarboxylase were separated by column chromatography of extracts of kidneys from androgen-treated male CD-1 mice on DEAE-Sepharose CL-6B, and purified individually to apparent homogeneity. On SDS-PAGE, a single major protein band of Mr 50000 was present in each. When incubated with casein kinase II, purified from rat liver cytosol, only one form of the enzyme, which represented 20% of the total ornithine decarboxylase in the tissue, became phosphorylated. The major form, which was eluted later from the column, could be phosphorylated only after treatment with alkaline phosphatase, indicating that the phosphatase removed enzyme-bound phosphate already attached at the casein kinase II phosphorylation site. Evidence for the occurrence of a phosphorylated form of the enzyme in kidneys of dexamethasone-treated rats is also presented.  相似文献   

14.
Purification and characterization of the beta-adrenergic receptor kinase   总被引:12,自引:0,他引:12  
The beta-adrenergic receptor kinase (beta-ARK) is a recently discovered enzyme which specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta-AR) as well as the light-bleached form of rhodopsin. beta-ARK is present in a wide variety of mammalian tissues. The kinase can be purified from bovine cerebral cortex to greater than 90% homogeneity by sequential chromatography on Ultrogel AcA34, DEAE-Sephacel, CM-Fractogel, and hydroxylapatite. This results in an approximately 20,000-fold purification with an overall recovery of 12%. The purified kinase has an Mr approximately 80,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several findings indicate that this peptide contains the beta-ARK activity. First, on hydroxylapatite chromatography the enzyme activity coelutes with the Mr approximately 80,000 protein as revealed by Coomassie-Blue staining. Second, under phosphorylating conditions the Mr approximately 80,000 protein is phosphorylated. Finally, the Mr approximately 80,000 protein specifically interacts with reconstituted agonist-occupied beta-AR. Kinetic parameters of the enzyme for beta-AR are Km = 0.25 microM and Vmax = 78 nmol/min/mg whereas for rhodopsin the values are Km = 6 microM and Vmax = 72 nmol/min/mg. The Km value of the enzyme for ATP is approximately 35 microM using either beta-AR or rhodopsin as substrate. Receptor phosphorylation by beta-ARK is effectively inhibited by Zn2+, digitonin and a variety of salts. The availability of purified beta-ARK should greatly facilitate studies of its role in receptor desensitization.  相似文献   

15.
Recombinant mouse leukotriene A4 hydrolase was expressed in Escherichia coli as a fusion protein with ten additional amino acids at the amino terminus and was purified to apparent homogeneity by means of precipitation, anion exchange, hydrophobic interaction and chromatofocusing chromatographies. By atomic absorption spectrometry, the enzyme was shown to contain one mol of zinc/mol of enzyme. Apparent kinetic constants (Km and Vmax) for the conversion of leukotriene A4 to leukotriene B4 (at 0 degree C, pH 8) were 5 microM and 900 nmol/mg per min, respectively. The purified enzyme also exhibited significant peptidase activity towards the synthetic amide alanine-4-nitroanilide. Km and Vmax for this reaction (at 37 degrees C, pH 8) were 680 microM and 365 nmol/mg per min, respectively. Apo-leukotriene A4 hydrolase, prepared by treating the enzyme with 1,10-phenanthroline, was virtually inactive with respect to both enzymatic activities, but could be reactivated by addition of stoichiometric amounts of zinc or cobalt. Exposure of the enzyme to leukotriene A4 resulted in a dose-dependent inactivation of both enzyme activities.  相似文献   

16.
Incubation of purified rat brain Ca2+/calmodulin-dependent protein kinase II for 2 min in the presence of Ca2+, calmodulin (CaM), Mg2+, and ATP converted the kinase from a completely Ca2+-dependent kinase to a substantially Ca2+-independent form with little loss of total activity. Subsequent addition of EGTA to the autophosphorylation reaction enhanced further autophosphorylation of the kinase which was associated with a suppression of total kinase activity to the Ca2+-independent value. Protein phosphatase 1 rapidly increased the suppressed total activity back to the control value and slowly decreased the Ca2+-independent activity. Kinetic analysis showed that the kinase not previously autophosphorylated had a Km for the synthetic peptide syntide-2 of 7 microM and Vmax of 9.8 mumol/min/mg when assayed in the presence of Ca2+ and CaM. The partially Ca2+-independent species, assayed in the presence of EGTA, had a Km of 21 microM and Vmax of 6.0. In the presence of Ca2+ and CaM the Km decreased and the Vmax increased to approximately control nonphosphorylated values. The completely Ca2+-independent form generated by sequential autophosphorylation first in the presence of Ca2+ and then EGTA had similar kinetic parameters to the partially independent species when assayed in the presence of EGTA, but addition of Ca2+ and CaM (up to 1 mg/ml) had little effect. These results suggest that separate autophosphorylation sites in the Ca2+/CaM-dependent protein kinase II are associated with formation of Ca2+-independent activity and suppression of total activity.  相似文献   

17.
The substrate specificities of cyclic GMP-dependent and cyclic AMP-dependent protein kinases have been compared by kinetic analysis using synthetic peptides as substrates. Both enzymes catalyzed the transfer of phosphate from ATP to calf thymus histone H2B, as well as to two synthetic peptides, Arg-Lys-Arg-Ser32-Arg-Lys-Glu and Arg-Lys-Glu-Ser36-Tyr-Ser-Val, corresponding to the amino acid sequences around serine 32 and serine 36 in histone H2B. Serine 38 in the latter peptide was not phosphorylated by either enzyme. Cyclic GMP-dependent kinase and cyclic AMP-dependent kinase catalyzed the incorporation of 1.1 and 2.0 mol of phosphate/mol of histone H2B, respectively. The phosphorylation of histone H2B, respectively. The phosphorylation of histone H2B by cyclic GMP-dependent kinase showed two distinct optima as the magnesium concentration was increased. However, the phosphorylation of either synthetic peptide by this enzyme was depressed at high magnesium concentrations. As the pH of reaction mixtures was elevated from pH 6 to pH 9, the rate of phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase continually increased. Acetylation of the NH2 terminus of the peptide did not qualitatively affect this pH profile, but did increase the Vmax value of the enzyme 3-fold. The apparent Km and Vmax values for the phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase were 21 microM and 4.4 mumol/min/mg, respectively. The synthetic peptide Arg-Lys-Glu-Ser36-Tyr-Ser-Val was a relatively poor substrate for cyclic GMP-dependent kinase, exhibiting a Km value of 732 microM, although the Vmax was 12 micromol/min/mg. With histone H2B as substrate for the cyclic GMP-dependent kinase, two different Km values were apparent. The Km values for cyclic AMP-dependent kinase for either synthetic peptide were approximately 100 microM, but the Vmax for Arg-Lys-Arg-Ser32-Arg-Lys-Glu was 1.1 mumol/min/mg, while the Vmax for Arg-Lys-Glu-Ser36-Tyr-Ser-Val was 16.5 mumol/min/mg. These data suggest that although the two cyclic nucleotide-dependent protein kinases have similar substrate specificities, the determinants dictated by the primary sequence around the two phosphorylation sites in histone H2B are different for the two enzymes.  相似文献   

18.
Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr of released ecto kinase (120-150,000). Consistently, a protein with Mr 125,000 in calf serum and a protein (possibly two) with Mr greater than 300,000 in calf plasma which are selectively phosphorylated by the ecto kinase are also substrates of the type II kinase. Thus, nearly all properties examined of the ecto kinase are characteristic for a type II kinase.  相似文献   

19.
Calmodulin-dependent protein phosphatase from bovine brain and heart was assayed for phosphotyrosine and phosphoserine phosphatase activity using several substrates: 1) smooth muscle myosin light chain (LC20) phosphorylated on tyrosine or serine residues, 2) angiotensin I phosphorylated on tyrosine, and 3) synthetic phosphotyrosine- or phosphoserine-containing peptides with amino acid sequences patterned after the autophosphorylation site in Type II regulatory subunit of the cAMP-dependent protein kinase. The phosphatase was activated by Ni2+ and Mn2+, and stimulated further by calmodulin. In the presence of Ni2+ and calmodulin, it exhibited similar kinetic constants for the dephosphorylation of phosphotyrosyl LC20 (Km = 0.9 microM, and Vmax = 350 nmol/min/mg) and phosphoseryl LC20 (Km = 2.6 microM, Vmax = 690 nmol/min/mg). Dephosphorylation of phosphotyrosyl LC20 was inhibited by phosphoseryl LC20 with an apparent Ki of 2 microM. Compared to the reactions with phosphotyrosyl LC20 as the substrate, reactions with phosphotyrosine-containing oligopeptides exhibited slightly higher Km and lower Vmax values. The reaction with the phosphoseryl peptide based on the Type II regulatory subunit sequence exhibited a slightly higher Km (23 microM), but a much higher Vmax (4400 nmol/min/mg) than that with its phosphotyrosine-containing counterpart. Micromolar concentrations of Zn2+ inhibited the phosphatase activity; vanadate was less potent, and 25 mM NaF was ineffective. The study provides quantitative data to serve as a basis for comparing the ability of the calmodulin-dependent protein phosphatase to act on phosphotyrosine- and phosphoserine-containing substrates.  相似文献   

20.
In earlier studies, two distinct molecules, 20 alpha-HSD-I and 20 alpha-HSD-II, responsible for 20 alpha-HSD activity of pig adrenal cytosol were purified to homogeneity and characterized [S. Nakajin et al., J. Steroid Biochem. 33 (1989) 1181-1189]. We report here that the purified 20 alpha-HSD-I, which mainly catalyzes the reduction of 17 alpha-hydroxyprogesterone to 17 alpha,20 alpha-dihydroxy-4-pregnen-3-one, catalyzes 3 alpha-hydroxysteroid oxidoreductase activity for 5 alpha (or 5 beta)-androstanes (C19), 5 alpha (or 5 beta)-pregnanes (C21) in the presence of NADPH as the preferred cofactor. The purified enzyme has a preference for the 5 alpha (or 5 beta)-androstane substrates rather than 5 alpha (or 5 beta)-pregnane substrates, and the 5 beta-isomers rather than 5 alpha-isomers, respectively. Kinetic constants in the reduction for 5 alpha-androstanedione (Km; 3.3 microM, Vmax; 69.7 nmol/min/mg) and 5 beta-androstanedione (Km; 7.7 microM, Vmax; 135.7 nmol/min/mg) were demonstrated for comparison with those for 17 alpha-hydroxyprogesterone (Km; 26.2 microM, Vmax; 1.3 nmol/min/mg) which is a substrate for 20 alpha-HSD activity. Regarding oxidation, the apparent Km and Vmax values for 3 alpha-hydroxy-5 alpha-androstan-17-one were 1.7 microM and 43.2 nmol/min/mg, and 1.2 microM and 32.1 nmol/min/mg for 3 alpha-hydroxy-5 beta-androstan-17-one, respectively. 20 alpha-HSD activity in the reduction of 17 alpha-hydroxyprogesterone catalyzed by the purified enzyme was inhibited competitively by addition of 5 alpha-DHT with a Ki value of 2.0 microM. Furthermore, 17 alpha-hydroxyprogesterone inhibited competitively 3 alpha-HSD activity with a Ki value of 150 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号