首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to determine the effect of age on three blood lactate parameters following maximal sprint swimming. The parameters examined were maximal blood lactate concentration, time to reach maximal blood lactate concentration, and half recovery time to baseline lactate concentration. These parameters were examined in 16 male competitive masters swimmers (n = 4 for each age group: 25-35, 36-45, 46-55, and 56 plus years) during both passive and active recovery following a maximal 100 m freestyle sprint. Passive recovery consisted of 60 min sitting in a comfortable chair and active recovery consisted of a 20-min swim at a self-selected pace. Capillary blood samples were obtained every 2 min up to 10 min of recovery then at regular intervals to the end of the recovery period. Curves of blood lactate concentration against time were drawn and the three parameters determined for each condition for each subject. There were no significant differences between age groups in any of the lactate parameters examined. A significant difference (P less than 0.05) was noted in each of the parameters between active and passive recovery over all age groups. As expected, active recovery produced lower maximal blood lactate concentrations, lower time to maximal blood lactate values, and lower half recovery times. These data suggest that intensive swimming training may prevent or delay the decline with age in the physiological factors affecting blood lactate values following a maximal sprint swim. Older sprint swimmers appeared to be capable of producing and removing lactic acid at the same rate as younger swimmers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47-82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47-86%) of the initial value. Lactate concentration after the 50 contractions was 2.9 +/- 1.3 mmol X 1(-1) and the peak post exercise value averaged 8.7 +/- 2.1 mmol X 1(-1). Fatigue and recovery respectively were correlated with capillary density (r = -0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r = 0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery.  相似文献   

3.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.  相似文献   

4.
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women.  相似文献   

5.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ten young (aged 23–30 years) and nine older (aged 54–59 years) healthy men with a similar size of limb muscle mass performed arm crank and leg cycle exercise for 30 min at relative exercise intensities of 50% and 75% of maximal oxygen uptake for the corresponding muscle group. In the tests, heart rate, blood pressure, gas exchange variables, rating of perceived exertion and blood lactate concentration were measured. The limb muscle mass was determined by anthropometric measurements. At the 75% target exercise level, four of the older men and two of the young men could not complete the arm-cranking test, and one of the older men and two of the young men could not complete the leg-cycle test. During arm-cranking the absolute exercise intensity was similar for the young and older men because of similar maximal values during arm-cranking. But during leg-cycling the absolute excercise intensity was higher for the young men than for the older men due to the difference in corresponding maximal values. During arm-cranking there were no significant differences in the physiological responses between the age groups except that a higher ventilatory response was noted among the older compared to the young men. During leg-cycling the heart rate values were higher among the young compared to the older men. But, when the heart rate values were expressed as a percentage of maximal heart rate in the corresponding maximal tests, no significant differences between the age groups were found. The results indicated that 30-min of arm or leg exercise at the same relative submaximal excercise intensity produces a similar degree of physiological strain in healthy older compared to young men. During arm-cranking, the young and the older men exercised at the same external intensity, indicating a similar ability to perform prolonged excercise using smaller muscle groups expressed both in absolute and relative terms. Accepted: 7 October 1996  相似文献   

7.
Despite many reports of long-lasting elevation of metabolism after exercise, little is known regarding the effects of exercise intensity and duration on this phenomenon. This study examined the effect of a constant duration (30 min) of cycle ergometer exercise at varied intensity levels [50 and 70% of maximal O2 consumption (VO2max)] on 3-h recovery of oxygen uptake (VO2). VO2 and respiratory exchange ratios were measured by open-circuit spirometry in five trained female cyclists (age 25 +/- 1.7 yr) and five untrained females (age 27 +/- 0.8 yr). Postexercise VO2 measured at intervals for 3 h after exercise was greater (P less than 0.01) after exercise at 50% VO2max in trained (0.40 +/- 0.01 l/min) and untrained subjects (0.39 +/- 0.01 l/min) than after 70% VO2max in (0.31 +/- 0.02 l/min) and untrained subjects (0.29 +/- 0.02 l/min). The lower respiratory exchange ratio values (P less than 0.01) after 50% VO2max in trained (0.78 +/- 0.01) and untrained subjects (0.80 +/- 0.01) compared with 70% VO2max in trained (0.81 +/- 0.01) and untrained subjects (0.83 +/- 0.01) suggest that an increase in fat metabolism may be implicated in the long-term elevation of metabolism after exercise. This was supported by the greater estimated fatty acid oxidation (P less than 0.05) after 50% VO2max in trained (147 +/- 4 mg/min) and untrained subjects (133 +/- 9 mg/min) compared with 70% VO2max in trained (101 +/- 6 mg/min) and untrained subjects (85 +/- 7 mg/min).  相似文献   

8.
The purpose of our study was to evaluate the potential inhibition of adipose tissue mobilization by lactate. Eight male subjects (age, 26. 25 +/- 1.75 yr) in good physical condition (maximal oxygen uptake, 59.87 +/- 2.77 ml. kg-1. min-1; %body fat, 10.15 +/- 0.89%) participated in this study. For each subject, two microdialysis probes were inserted into abdominal subcutaneous tissue. Lactate (16 mM) was perfused via one of the probes while physiological saline only was perfused via the other, both at a flow rate of 2.5 microl/min. In both probes, ethanol was also perfused for adipose tissue blood flow estimation. Dialysates were collected every 10 min during rest (30 min), exercise at 50% maximal oxygen consumption (120 min), and recovery (30 min) for the measurement of glycerol concentration. During exercise, glycerol increased significantly in both probes. However, no differences in glycerol level and ethanol extraction were observed between the lactate and control probes. These findings suggest that lactate does not impair subcutaneous abdominal adipose tissue mobilization during exercise.  相似文献   

9.
To study the effects of exercise intensity and duration on excess postexercise oxygen consumption (EPOC), 8 men [age = 27.6 (SD 3.8) years, VO2max = 46.1 (SD 8.5) ml min-1 kg-1] performed four randomly assigned cycle-ergometer tests (20 min at 60% VO2max, 40 min at 60% VO2max, 20 min at 70% VO2max, and 40 min at 70% VO2max). O2 uptake, heart rate and rectal temperature were measured before, during, and for 1 h following the exercise tests. Blood for plasma lactate measurements was obtained via cannulae before, and at selected times, during and following exercise. VO2 rapidly declined to preexercise levels following each of the four testing sessions, and there were no differences in EPOC between the sessions. Blood lactate and rectal temperature increased (P < 0.05) with exercise, but had returned to preexercise levels by 40 min of recovery. The results indicate that VO2 returned to resting levels within 40 min after the end of exercise, regardless of the intensity (60% and 70% VO2max) or duration (20 min and 40 min) of the exercise, in men with a moderate aerobic fitness level.  相似文献   

10.
Sex differences in fatigue resistance of the adductor pollicis (AP) muscle were studied in 24 older adults who were divided into three groups: 12 older men (69.8 +/- 4.60 years), 6 older women not on hormone replacement therapy (HRT) (70.2 +/- 4.02 years), and 6 older women on HRT (68.7 +/- 6.47 years). Fatigue in the AP muscle was induced using an intermittent (5 s contraction, 5 s rest) submaximal voluntary contraction (50% of maximal voluntary contraction (MVC)) protocol, which was continued until exhaustion (i.e., when subjects could either no longer maintain a 5-s contraction at 50% MVC or when the MVC was deemed to be lower than the target force). There was no effect of HRT on MVC or time to fatigue (TTF); therefore, the older women were pooled as one subject group. At baseline, men were stronger than women for MVC (75.9 +/- 18.8 N in men vs. 56.8 +/- 10.0 N in women; P < 0.05) and evoked twitch force (7.3 +/- 1.7 N in men vs. 5.2 +/- 0.8 N in women; P < 0.05). There was no difference in TTF between men and women (14.77 +/- 7.06 min in men vs. 11.53 +/- 4.91 min in women; P > 0.20), nor was there a significant relationship between baseline muscle force and TTF (r = 0.14). There was also no difference in the pattern of fatigue and recovery between the men and women. These results suggest that there is no difference in endurance or fatigue characteristics of the AP muscle in men and women over the age of 65 years, and that baseline muscle force does not predict fatigue resistance in this muscle.  相似文献   

11.
Blood lactate production and recovery from anaerobic exercise were investigated in 19 trained (AG) and 6 untrained (CG) prepubescent boys. The exercises comprised 3 maximal test performances; 2 bicycle ergometer tests of different durations (15 s and 60 s), and running on a treadmill for 23.20 +/- 2.61 min to measure maximal oxygen uptake. Blood samples were taken from the fingertip to determine lactate concentrations and from the antecubital vein to determine serum testosterone. Muscle biopsies were obtained from vastus lateralis. Recovery was passive (seated) following the 60 s test but that following the treadmill run was initially active (10 min), and then passive. Peak blood lactate was highest following the 60 s test (AG, 13.1 +/- 2.6 mmol.1-1 and CG, 12.8 +/- 2.3 mmol.1-1). Following the 15 s test and the treadmill run, peak lactate values were 68.7 and 60.6% of the 60 s value respectively. Blood lactate production was greater (p less than 0.001) during the 15 s test (0.470 +/- 0.128 mmol.1-1.s-1) than during the 60 s test (0.184 +/- 0.042 mmol.1-1.s-1). Although blood lactate production was only nonsignificantly greater in AG, the amount of anaerobic work in the short tests was markedly greater (p less than 0.05-0.01) in AG than CG. Muscle fibre area (type II%) and serum testosterone were positively correlated (p less than 0.05) with blood lactate production in both short tests. Blood lactate elimination was greater (p less than 0.001) at the end of the active recovery phase than in the next (passive) phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The present investigation aimed to establish whether noncompetitive rock climbing fulfills sports medicine recommendations for maintaining a good level of aerobic fitness. The physiological profile of 13 rock climbers, 8 men (age, 43 +/- 8 years) and 5 women (age, 31 +/- 8 years) was assessed by means of laboratory tests. Maximal aerobic power (VO2peak) and ventilatory threshold (VT) were assessed using a cycloergometer incremental test. During outdoor rock face climbing, VO2 and heart rate (HR) were measured with a portable metabolimeter and the relative steady-state values (VO2 and HR during rock climbing) were computed. Blood lactate was measured during recovery. All data are presented as mean +/- SD. VO2 was 39.1 +/- 4.3 mL.kg.min in men and 39.7 +/- 5 mL.kg.min in women, while VT was 29.4 +/- 3.0 mL.kg.min in men and 28.8 +/- 4.6 mL.kg.min in women. The VO2 during rock climbing was 28.3 +/- 1.5 mL.kg.min in men and 27.5 +/- 3.7 mL.kg.min in women. The HR during rock climbing was 144 +/- 16 b.min in men and 164 +/- 13 b.min in women. The aerobic profile was classified from excellent to superior in accordance with the standards of the American College of Sports Medicine (ACSM). The exercise intensity (VO2 during rock climbing expressed as a percentage of VO2peak) was 70 +/- 6% in men and 72 +/- 8% in women. Moreover, the energy expenditure was 1000-1500 kcal per week. In conclusion, noncompetitive rock climbing has proved to be a typical aerobic activity. The intensity of exercise is comparable to that recommended by the American College of Sports Medicine to maintain good cardiorespiratory fitness.  相似文献   

13.
14.
The maximal oxygen uptake (VO2 max) of 228 men and 47 women from the Indian agricultural community was measured. The VO2 max in 20-24-year-old men was about 17% less than in the 25-29-year-old group. With advancing age, the VO2 declined gradually to the ages 55-59, excepting the 36-39-year-old group. The loss in VO2 max was 0.65 ml/kg.min per year between 25 and 39 years of age and 0.16 ml/kg.min per year between 40 and 59 years of age. However, 30-39-year-old women had 7% higher VO2 max than the 20-29-year-old age group; and the difference in VO2 max between the group 30-39 and the group 40-49 years of age was 32%. The 20-29-and 40-49-year-old women had VO2 max 24 and 30% less than those of men in the same age range.  相似文献   

15.
A simple method for sampling skin secretion in 1-min periods was developed for investigating the effects of progressive increases in exercise intensity on Na+, K+ and Cl- secretions from the skin of the forearm. Ten healthy male subjects performed exercise consisting of eight stepwise increases in intensity from 50 to 225 W, with a 25-W increase at each step. Exercise at each step was for 3 min followed by a 1-min recovery period. Samples of blood and skin secretion were taken during the recovery period. Significant positive correlations were found between the mean concentrations of Na+ and Cl- and between those of K+ and Cl- in the skin secretion. The concentrations of electrolytes in the skin secretion also showed significant correlations with the blood lactate concentrations. The inflection points for secretions of Na+, K+ and Cl- were 4.04, 3.61 and 3.83 mmol.l-1 of blood lactate; 64.42, 61.96 and 62.14% of maximal oxygen consumption (VO2max); and exercise intensities of 123.01, 117.65 and 125.07 W, respectively. No significant differences were observed between the value of 67.27% of VO2max or 134.00W at the onset of blood lactate accumulation (OBLA) and the inflection points. From these results we concluded that changes in electrolyte concentrations in skin secretion during incremental exercise according to this protocol were closely related with the change in the blood lactate concentration, and that the inflection points for electrolytes may have been near the exercise intensity at OBLA.  相似文献   

16.
The purpose of this study was to evaluate the physiological strain index (PSI) for different age groups during exercise-heat stress (EHS). PSI was applied to three different databases. First, from young and middle-age men (21 +/- 2 and 46 +/- 5 yr, respectively) matched (n = 9 each, P > 0.05) for maximal aerobic power. Subjects were heat acclimated by daily treadmill walking for two 50-min bouts separated by 10-min rest for 10 days in a hot-dry environment [49 degrees C, 20% relative humidity (RH)]. The second database involved a group (n = 8) of young (YA) and a group (n = 7) of older (OA) men (26 +/- 1 and 69 +/- 1 yr, respectively) who underwent 16 wk of aerobic training and two control groups (n = 7 each) who were matched for age to YA and OA. These four groups performed EHS at 36 degrees C, 40% RH on a cycle ergometer for 60 min at 60% maximal aerobic power before and after training. The third database was obtained from three groups of postmenopausal women and a group of 10 men. Two groups of women (n = 8 each) were undergoing hormone replacement therapy, estrogen or estrogen plus progesterone, and the third group (n = 9) received no hormone replacement. Subjects were over 50 yr and performed the same EHS: exercising at 36 degrees C, 40% RH on a cycle ergometer for 60 min. PSI assessed the strain for all three databases and reported differences were significant at P < 0.05. This index rated the strain in rank order, whereas the postacclimation and posttraining groups were assessed as having less strain than the preacclimation and pretraining groups. Furthermore, middle-aged women on estrogen replacement therapy had less strain than estrogen + progesterone and no hormone therapy. PSI evaluation was extended for men and women of different ages (50-70 yr) during acute EHS, heat acclimation, after aerobic training, and inclusive of women undergoing hormone replacement therapy.  相似文献   

17.
Eight healthy men exercised to exhaustion on a cycle ergometer at a work load of 176 +/- 9 (SE) W corresponding to 67% (range 63-69%) of their maximal O2 uptake (exercise I). Exercise of the same work load was repeated after 75 min of recovery (exercise II). Exercise duration (range) was 65 (50-90) and 21 (14-30) min for exercise I and II, respectively. Femoral venous blood samples were obtained before and during exercise and analyzed for NH3 and lactate. Plasma NH3 was 12 +/- 2 and 19 +/- 6 mumol/l before exercise I and II, respectively and increased during exercise to exhaustion to peak values of 195 +/- 29 (exercise I) and 250 +/- 30 (exercise II) mumol/l, respectively. Plasma NH3 increased faster during exercise II compared with exercise I and at the end of exercise II was threefold higher than the value for the corresponding time of exercise I (P less than 0.001). Blood lactate increased during exercise I and after 20 min of exercise was 3.7 +/- 0.4 mmol/l and remained unchanged until exhaustion. During exercise II blood lactate increased less than during exercise I. It is concluded that long-term exercise to exhaustion results in large increases in plasma NH3 despite relatively low levels of blood lactate. It is suggested that the faster increase in plasma NH3 during exercise II (vs. exercise I) reflects an increased formation in the working muscle that may be caused by low glycogen levels and impairment of the ATP resynthesis.  相似文献   

18.
The ontogeny of carnitine palmitoyltransferase (CPT) was examined in liver and muscle throughout growth and development of the domestic felid. Homogenates from animals in six age categories (newborn, 24-h, 3-, 6- and 9-week-old, and adult) were examined. Hepatic CPT specific activity increased progressively from birth to 6 weeks and then declined slightly into adulthood, with maximal values for animals greater than 24 h of age [171 nmol/(min g wet tissue)] being 70% higher than for newborns [99 nmol/(min g wet tissue)] (P<.05). Specific activity in adults was similar to that in 6- and 9-week-old juveniles. Total hepatic CPT activity [nmol/(min liver)] increased linearly with age, but the activity expressed per kg body weight [nmol/(min kg BW)] declined after 3 weeks. In contrast, skeletal muscle CPT-specific activity remained unchanged from birth to 3 weeks and then increased significantly, with maximal values at 9 weeks being 90% greater than those for young animals (newborn to 3 weeks; P<.05), whereas specific activity in adults was 50% lower than that observed in 9-week-old animals (P<.05). Hepatic and muscle apparent Km's for carnitine averaged 440 microM and did not vary with age. Hepatic carnitine concentrations remained relatively constant during development, but were lower in adult lactating females, whereas skeletal muscle concentrations increased markedly with age. Hepatic concentrations were 20-50% higher than apparent Km's for carnitine in young and growing animals, but concentrations were similar to the apparent Km at 6 weeks and significantly lower than the apparent Km in adults. Carnitine concentrations in skeletal muscle were 37% lower than apparent Km during the neonatal period, but significantly higher in cats >3 weeks of age. We conclude that postnatal increases in CPT activity support increased capacity for fatty acid oxidation in the developing felid and that dietary carnitine may be required to maximize enzyme activity.  相似文献   

19.
The evolution of blood lactate concentrations has been studied during a force/velocity test on a cycloergometer in order to specify if the repetition of short (6 s) and intense exercises induced an important participation of lactic anaerobic metabolism. Seven moderately trained male subjects, aged from 23 to 29 years (mean = 24.92 +/- 0.79) participated in this study. Two blood samples (venous catheter) were performed, at rest, then for each work load (1 kg to 10 kg): at the end of the exercise (P1) and during the recovery at 5 min (P2). From the lowest work load, blood lactate concentration increased significantly, at the end of the exercise (F = 16.21; P less than 0.001) and during the recovery (F = 22.62; P less than 0.001). The mean values were respectively at the peak of power: 9.84 +/- 0.85 et 10.19 +/- 0.75 mmol.l-1. Once the peak of power was obtained, the blood lactate concentration remained steady. In conclusion, the repetition of short and intense exercises induced an important participation of lactic anaerobic metabolism. The lactate could be the limiting factor of the maximal power.  相似文献   

20.
In order to test the effect of artificially induced alkalosis and acidosis on the appearance of plasma lactate and work production, six well-trained oarsmen (age = 23.8 +/- 2.5 years; mass = 82.0 +/- 7.5 kg) were tested on three separate occasions after ingestion of 0.3 g.kg-1. NH4Cl (acidotic), NaHCO3 (alkalotic) or a placebo (control). Blood was taken from a forearm vein immediately prior to exercise for determination of pH and bicarbonate. One hour following the ingestion period, subjects rowed on a stationary ergometer at a pre-determined sub-maximal rate for 4 min, then underwent an immediate transition to a maximal effort for 2 min. Blood samples from an indwelling catheter placed in the cephalic vein were taken at rest and every 30 s during the 6 min exercise period as well as at 1, 3, 6, 9, 12, 15, 18, 21, 25 and 30 min during the passive recovery period. Pre-exercise blood values demonstrated significant differences (p less than 0.01) in pH and bicarbonate in all three conditions. Work outputs were unchanged in the submaximal test and in the maximal test (p greater than 0.05), although a trend toward decreased production was evident in the acidotic condition. Analysis of exercise blood samples using ANOVA with repeated measures revealed that the linear increase in plasma lactate concentration during control was significantly greater than acidosis (p less than 0.01). Although plasma lactate values during alkalosis were consistently elevated above control there was no significant difference in the linear trend (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号