共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1. 总被引:4,自引:24,他引:4 下载免费PDF全文
D S Parris A Cross L Haarr A Orr M C Frame M Murphy D J McGeoch H S Marsden 《Journal of virology》1988,62(3):818-825
Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65KDBP) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65KDBP. Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65KDBP, was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65KDBP. The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65KDBP, thus confirming the gene assignment. 相似文献
2.
The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. 总被引:3,自引:23,他引:3 下载免费PDF全文
The 65-kilodalton DNA-binding protein (65KDBP) of herpes simplex virus type 1 (HSV-1), the product of the UL42 gene, is required for DNA replication both in vitro and in vivo, yet its actual function is unknown. By two independent methods, it was shown that the 65KDBP stimulates the activity of the HSV-1-encoded DNA polymerase (Pol). When Pol, purified from HSV-1-infected cells, was separated from the 65KDBP, much of its activity was lost. However, addition of the 65KDBP, purified from infected cells, stimulated the activity of Pol 4- to 10-fold. The ability of a monoclonal antibody to the 65KDBP to remove the Pol-stimulating activity from preparations of the 65KDBP confirmed that the activity was not due to a trace contaminant. Furthermore, the 65KDBP did not stimulate the activity of other DNA polymerases derived from T4, T7, or Escherichia coli. The 65KDBP gene transcribed in vitro from cloned DNA and translated in vitro in rabbit reticulocyte lysates also was capable of stimulating the product of the pol gene when the RNAs were cotranslated. The product of a mutant 65KDBP gene missing the carboxy-terminal 28 amino acids exhibited wild-type levels of Pol stimulation, while the products of two large deletion mutants of the gene could not stimulate Pol activity. These experiments suggest that the 65KDBP may be an accessory protein for the HSV-1 Pol. 相似文献
3.
Localization of the herpes simplex virus type 1 65-kilodalton DNA-binding protein and DNA polymerase in the presence and absence of viral DNA synthesis. 下载免费PDF全文
L D Goodrich P A Schaffer D I Dorsky C S Crumpacker D S Parris 《Journal of virology》1990,64(12):5738-5749
Using indirect immunofluorescence, well-characterized monoclonal and polyclonal antibodies, and temperature-sensitive (ts) mutants of herpes simplex virus type 1, we demonstrated that the 65-kilodalton DNA-binding protein (65KDBP), the major DNA-binding protein (infected cell polypeptide 8 [ICP8]), and the viral DNA polymerase (Pol) colocalize to replication compartments in the nuclei of infected cells under conditions which permit viral DNA synthesis. When viral DNA synthesis was blocked by incubation of the wild-type virus with phosphonoacetic acid, the 65KDBP, Pol, and ICP8 failed to localize to replication compartments. Instead, ICP8 accumulated nearly exclusively to prereplication sites, while the 65KDBP was only diffusely localized within the nuclei. Although some of the Pol accumulated in prereplication sites occupied by ICP8 in the presence of phosphonoacetic acid, a significant amount of Pol also was distributed throughout the nuclei. Examination by double-labeling immunofluorescence of DNA- ts mutant virus-infected cells revealed that the 65KDBP also did not colocalize with ICP8 to prereplication sites at temperatures nonpermissive for virus replication. These results are in disagreement with the hypothesis that ICP8 is the major organizational protein responsible for attracting other replication protein to prereplication sites in preparation for viral DNA synthesis (A. de Bruyn Kops and D. M. Knipe, Cell 55:857-868, 1988), and they suggest that other viral proteins, perhaps in addition to ICP8, or replication fork progression per se are required to organize the 65KDBP. 相似文献
4.
Purification of the herpes simplex virus type 1 65-kilodalton DNA-binding protein: properties of the protein and evidence of its association with the virus-encoded DNA polymerase. 总被引:7,自引:24,他引:7 下载免费PDF全文
Using a combination of conventional column chromatography and velocity sedimentation, we have purified the 65-kilodalton DNA-binding protein (65KDBP) encoded by herpes simplex virus (HSV) greater than 625-fold. The HSV type 1 (HSV-1)-encoded DNA polymerase (pol) cofractionated with 65KDBP through DEAE-Sephacel, Blue Sepharose, and Mono Q columns and was only separated from 65KDBP by sedimentation through a glycerol gradient. Immunoaffinity columns containing monoclonal antibody (MAb) 6898 immunoglobulin effectively bound most of the HSV-1 pol activity which coeluted with 65KDBP. The pattern of reactivities of HSV-1/HSV-2 recombinants with MAbs specific for HSV-1 65KDBP or the HSV-2-infected cell-specific protein ICSP34,35 strongly suggests that these two species are serotype equivalents of the same protein. Taken together, all these data indicate that 65KDBP is a pol-associated protein and the HSV-1 counterpart of HSV-2 ICSP34,35 previously reported to have similar properties (P. J. Vaughan, D. J. M. Purifoy, and K. L. Powell, J. Virol. 53:501-508, 1985). Purified preparations of 65KDBP were capable of binding to double-stranded DNA, as determined by filter retention and mobility shift assays. The protein-DNA complex formed with 65KDBP was distinct from that produced by pol and could be further shifted by the addition of immunoglobulin specific for 65KDBP. These results demonstrate that 65KDBP has been purified substantially free from pol and indicate that DNA binding is an inherent property of the protein. 相似文献
5.
N-ethylmaleimide inhibition of the DNA-binding activity of the herpes simplex virus type 1 major DNA-binding protein. 下载免费PDF全文
W T Ruyechan 《Journal of virology》1988,62(3):810-817
The major herpes simplex virus DNA-binding protein, designated ICP8, binds tightly to single-stranded DNA and is required for replication of viral DNA. The sensitivity of the DNA-binding activity of ICP8 to the action of the sulfhydryl reagent N-ethylmaleimide has been examined by using nitrocellulose filter-binding and agarose gel electrophoresis assays. Incubation of ICP8 with N-ethylmaleimide results in a rapid loss of DNA-binding activity. Preincubation of ICP8 with single-stranded DNA markedly inhibits this loss of binding activity. These results imply that a free sulfhydryl group is involved in the interaction of ICP8 with single-stranded DNA and that this sulfhydryl group becomes less accessible to the environment upon binding. Agarose gel electrophoretic analysis of the binding interaction in the presence and absence of N-ethylmaleimide indicates that the cooperative binding exhibited by ICP8 is lost upon treatment with this reagent but that some residual noncooperative binding may remain. This last result was confirmed by equilibrium dialysis experiments with the 32P-labeled oligonucleotide dT10 and native and N-ethylmaleimide-treated ICP8. 相似文献
6.
7.
E.D. Moiseeva N.P. Bazhulina Y.G. Gursky S.L. Grokhovsky A.N. Surovaya 《Journal of biomolecular structure & dynamics》2017,35(4):704-723
In the present paper, the interactions of the origin binding protein (OBP) of herpes simplex virus type 1 (HSV1) with synthetic four-way Holliday junctions (HJs) were studied using electrophoresis mobility shift assay and the FRET method and compared with the interactions of the protein with duplex and single-stranded DNAs. It has been found that OBP exhibits a strong preference for binding to four-way and three-way DNA junctions and possesses much lower affinities to duplex and single-stranded DNAs. The protein forms three types of complexes with HJs. It forms complexes I and II which are reminiscent of the tetramer and octamer complexes with four-way junction of HJ-specific protein RuvA of Escherichia coli. The binding approaches saturation level when two OBP dimers are bound per junction. In the presence of Mg2+ ions (≥2 mM) OBP also interacts with HJ in the stacked arm form (complex III). In the presence of 5 mM ATP and 10 mM Mg2+ ions OBP catalyzes processing of the HJ in which one of the annealed oligonucleotides has a 3′-terminal tail containing 20 unpaired thymine residues. The observed preference of OBP for binding to the four-way DNA junctions provides a basis for suggestion that OBP induces large DNA structural changes upon binding to Box I and Box II sites in OriS. These changes involve the bending and partial melting of the DNA at A+T-rich spacer and also include the formation of HJ containing Box I and Box II inverted repeats and flanking DNA sequences. 相似文献
8.
Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. 总被引:11,自引:60,他引:11 下载免费PDF全文
We have assigned eight temperature-sensitive mutants of herpes simplex virus type 1 to complementation group 1-1. Members of this group fail to complement mutants in herpes simplex virus type 2 complementation group 2-2. The mutation of one member of group 1-1, tsHA1 of strain mP, has been shown to map in or near the sequence which encodes the major herpes simplex virus type 1 DNA-binding protein (Conley et al., J. Virol. 37:191-206, 1981). The mutations of five other members of group 1-1 map in or near the sequence in which the tsHA1 mutation maps, a sequence which lies near the center of UL between the genes for the viral DNA polymerase and viral glycoprotein gAgB. These mutants can be divided into two groups; the mutations of one group map between coordinates 0.385 and 0.398, and the mutations of the other group map between coordinates 0.398 and 0.413. At the nonpermissive temperature mutants in group 1-1 are viral DNA negative, and mutant-infected cells fail to react with monoclonal antibody to the 130,000-dalton DNA-binding protein. Taken together, these data indicate that mutants in complementation groups 1-1 and 2-2 define the gene for the major herpes simplex virus DNA-binding protein, an early gene product required for viral DNA synthesis. 相似文献
9.
Characterization of a major DNA-binding domain in the herpes simplex virus type 1 DNA-binding protein (ICP8). 总被引:5,自引:10,他引:5 下载免费PDF全文
We have studied the major DNA-binding protein (ICP8) from herpes simplex virus type 1 to identify its DNA-binding site. Since we obtained our protein from a cell line carrying multiple chromosomally located copies of the ICP8 gene, we first analyzed this protein to assess its similarity to the corresponding viral protein. Our protein resembled the viral protein by molecular weight, response to antibody, preference for binding single-stranded DNA, and ability to lower the melting temperature of poly(dA-dT). To define the DNA-binding domain, we subjected the protein to limited trypsin digestion and separated the peptide products on a sodium dodecyl sulfate-polyacrylamide gel. These fragments were then transferred to a nitrocellulose membrane, renatured in situ, and tested for their ability to bind DNA. From this assay, we identified four fragments which both bound DNA and exhibited the expected binding preference for single-stranded DNA. The sequence of the smallest of these fragments was determined and corresponds to a polypeptide spanning residues 300 to 849 in the intact protein. This peptide contains several regions which may be important for DNA binding based on sequence similarities in single-stranded DNA-binding proteins from other herpesviruses and, in one case, on a conserved sequence found in more distant procaryotic and eucaryotic proteins. 相似文献
10.
Purified preparations of herpes simplex virus type 2 DNA polymerase made by many different laboratories always contain at least two polypeptides. The major one, of about 150,000 molecular weight, has been associated with the polymerase activity. The second protein, of about 54,000 molecular weight, which we previously designated ICSP 34, 35, has now been purified. The purified protein has been used to prepare antisera (both polyclonal rabbit serum and monoclonal antibodies). These reagents have been used to characterize the protein, to demonstrate its quite distinct map location from that of the DNA polymerase on the herpes simplex virus genome, and to demonstrate the close association between the two polypeptides. 相似文献
11.
Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene. 总被引:3,自引:11,他引:3 下载免费PDF全文
The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC. 相似文献
12.
A vector which expresses the herpes simplex virus type 1 (HSV-1) (strain 17) DNA polymerase gene was constructed by ligating two separately cloned HSV DNA restriction fragments into an intermediate plasmid and then mobilizing the intact polymerase gene-encoding sequence into a pSV2 derivative. The expression vector (pD7) contains a functional simian virus 40 replication origin and early enhancer-promoter upstream from the HSV DNA polymerase-encoding sequence. COS-1 cells transfected with pD7 contained an RNA species, shown by Northern blot analysis to hybridize specifically with an HSV DNA pol probe and to be the same size (4.3 kilobases) as the pol mRNA found in HSV-1-infected COS-1 cells. A genetic complementation test was used to establish that pD7 expresses a functional pol gene product. COS-1 cells transfected with pD7 were able to partially complement the growth defect of an HSV-1 (KOS) temperature-sensitive mutant, tsC7, in the DNA polymerase gene at the nonpermissive temperature. 相似文献
13.
14.
Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. 总被引:97,自引:3,他引:97 下载免费PDF全文
We examined the expression and localization of herpesvirus proteins in monkey cells transfected with recombinant plasmids containing herpes simplex virus (HSV) DNA sequences. Low levels of expression of the major HSV DNA-binding protein ICP8 were observed when ICP8-encoding plasmids were introduced into cells alone. ICP8 expression was greatly increased when a recombinant plasmid encoding the HSV alpha (immediate-early) ICP4 and ICP0 genes was transfected with the ICP8 gene. Deletion and subcloning analysis indicated that two separate functions capable of stimulating ICP8 expression were encoded on the alpha gene plasmid. One mapped in or near the ICP4 gene, and one mapped in or near the ICP0 gene. Their stimulatory effects were synergistic when introduced on two separate plasmids. Thus, two separate viral functions can activate herpesvirus early gene expression in transfected cells. 相似文献
15.
16.
Regulation of herpes simplex virus gene expression. 总被引:9,自引:0,他引:9
17.
The primary amino acid sequence of the major herpes simplex virus type 1 (HSV-1)-infected cell polypeptide 8 (ICP8) deduced from the DNA sequence of the unique long open reading frame 29 (UL29 ORF) contains a potential metal-binding domain of the form Cys-X2-5-Cys-X2-15-A-X2-4-A where A may be either histidine or cysteine and X is any amino acid. The putative metal-binding sequence in ICP8 encompasses residues 499-512 as follows: C-N-L-C-T-F-D-T-R-H-A-C-V-H-. Atomic absorption analysis of several preparations of ICP8 indicates the presence of 1 mol of zinc/mol of protein. The zinc is resistant to removal by dialysis against concentrations of EDTA which deplete zinc from alcohol dehydrogenase. The bound zinc can be removed by reaction with the reversible sulfhydryl reagent p-hydroxymercurimethylsulfonate and the zinc-depleted protein transiently retains DNA binding activity. Digestion of both native and zinc-depleted ICP8 with V8 protease indicates that the bound zinc is required for the structural integrity of the protein. 相似文献
18.
The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains an AT-rich region and three highly homologous sequences, sites I, II, and III, identified as binding sites for the HSV-1 origin-binding protein (OBP). In the present study, interactions between specific oriS DNA sequences and proteins in uninfected cell extracts were characterized. The formation of one predominant protein-DNA complex, M, was demonstrated in gel shift assays following incubation of uninfected cell extracts with site I DNA. The cellular protein(s) that comprises complex M has been designated origin factor I (OF-I). The OF-I binding site was shown to partially overlap the OBP binding site within site I. Complexes with mobilities indistinguishable from that of complex M also formed with site II and III DNAs in gel shift assays. oriS-containing plasmid DNA mutated in the OF-I binding site exhibited reduced replication efficiency in transient assays, demonstrating a role for this site in oriS function. The OF-I binding site is highly homologous to binding sites for the cellular CCAAT DNA-binding proteins. The binding site for the CCAAT protein CP2 was found to compete for OF-I binding to site I DNA. These studies support a model involving the participation of cellular proteins in the initiation of HSV-1 DNA synthesis at oriS. 相似文献
19.
Latent herpes simplex virus type 1 gene expression in ganglia innervating the human gastrointestinal tract. 总被引:1,自引:0,他引:1 下载免费PDF全文
Using in situ hybridization, we demonstrated that latent herpes simplex virus type 1 (HSV-1) gene expression is prevalent in human adult nodose ganglia. This suggests that infection of gastrointestinal sensory nerves, probably through swallowed virus-laden oral secretions, occurs commonly and that HSV-1 reactivating from this site may play a role in recurrent gastrointestinal disorders. 相似文献
20.
Ribonucleotide reductase of herpes simplex virus type 2 resembles that of herpes simplex virus type 1. 总被引:2,自引:0,他引:2 下载免费PDF全文
The ribonucleotide reductase (ribonucleoside-diphosphate reductase; EC 1.17.4.1) induced by herpes simplex virus type 2 infection of serum-starved BHK-21 cells was purified to provide a preparation practically free of both eucaryotic ribonucleotide reductase and contaminating enzymes that could significantly deplete the substrates. Certain key properties of the herpes simplex virus type 2 ribonucleotide reductase were examined to define the extent to which it resembled the herpes simplex virus type 1 ribonucleotide reductase. The herpes simplex virus type 2 ribonucleotide reductase was inhibited by ATP and MgCl2 but only weakly inhibited by the ATP X Mg complex. Deoxynucleoside triphosphates were at best only weak inhibitors of this enzyme. ADP was a competitive inhibitor (K'i, 11 microM) of CDP reduction (K'm, 0.5 microM), and CDP was a competitive inhibitor (K'i, 0.4 microM) of ADP reduction (K'm, 8 microM). These key properties closely resemble those observed for similarly purified herpes simplex virus type 1 ribonucleotide reductase and serve to distinguish these virally induced enzymes from other ribonucleotide reductases. 相似文献