首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A candidate live-virus vaccine strain of Venezuelan equine encephalitis virus (VEE) was configured as a replication-competent vector for in vivo expression of heterologous immunogens. Three features of VEE recommend it for use as a vaccine vector. (i) Most human and animal populations are not already immune to VEE, so preexisting immunity to the vector would not limit expression of the heterologous antigen. (ii) VEE replicates first in local lymphoid tissue, a site favoring the induction of an effective immune response. (iii) Parenteral immunization of rodents and humans with live, attenuated VEE vaccines protects against mucosal challenge, suggesting that VEE vaccine vectors might be used successfully to protect against mucosal pathogens. Upon subcutaneous (s.c.) inoculation into the footpad of mice, a VEE vector containing the complete influenza virus hemagglutinin (HA) gene expressed HA in the draining lymph node and induced anti-HA immunoglobulin G (IgG) and IgA serum antibodies, the levels of which could be increased by s.c. booster inoculation. When immunized mice were challenged intranasally with a virulent strain of influenza virus, replication of challenge virus in their lungs was restricted, and they were completely protected from signs of disease. Significant reduction of influenza virus replication in the nasal epithelia of HA vector-immunized mice suggested an effective immunity at the mucosal surface. VEE vaccine vectors represent an alternative vaccination strategy when killed or subunit vaccines are ineffective or when the use of a live attenuated vaccine might be unsafe.  相似文献   

2.
Mice immunized with recombinant vaccinia virus (VACC) expressing Venezuelan equine encephalitis (VEE) virus capsid protein and glycoproteins E1 and E2 or with attenuated VEE TC-83 virus vaccine developed VEE-specific neutralizing antibody and survived intraperitoneal challenge with virulent VEE virus strains including Trinidad donkey (subtype 1AB), P676 (subtype 1C), 3880 (subtype 1D), and Everglades (subtype 2). However, unlike immunization with TC-83 virus, immunization with the recombinant VACC/VEE virus did not protect mice from intranasal challenge with VEE Trinidad donkey virus. These results suggest that recombinant VACC/VEE virus is a vaccine candidate for equines and humans at risk of mosquito-transmitted VEE disease but not for laboratory workers at risk of accidental exposure to aerosol infection with VEE virus.  相似文献   

3.
4.
高致病性H5N1亚型禽流感病毒 (AIV) 严重威胁到人类健康,因此研制高效、安全的禽流感疫苗具有重要意义。以我国分离的首株人H5N1亚型禽流感病毒 (A/Anhui/1/2005) 作为研究对象,PCR扩增基质蛋白2 (M2) 和血凝素 (HA) 基因全长开放阅读框片段,构建共表达H5N1亚型AIV膜蛋白基因 M2和HA的重组质粒pStar-M2/HA。此外,还通过同源重组以293细胞包装出表达M2基因的重组腺病毒Ad-M2以及表达HA基因的重组腺病毒Ad-HA。用间接免疫荧光 (IFA) 方法检测到了各载体上插入基因的表达。按初免-加强程序分别用重组质粒pStar-M2/HA和重组腺病毒Ad-HA+Ad-M2免疫BALB/c小鼠,共免疫4次,每次间隔14 d。第1、3次用DNA疫苗,第2、4次用重组腺病毒载体疫苗,每次免疫前及末次免疫后14 d采集血清用于检测体液免疫应答,末次免疫后14 d采集脾淋巴细胞用于检测细胞免疫应答。血凝抑制 (HI) 实验检测到免疫后小鼠血清中的HI活性。ELISA实验检测到免疫后小鼠血清中抗H5N1亚型流感病毒表面蛋白的IgG抗体。ELISPOT实验检测到免疫后小鼠针对M2蛋白和HA蛋白的特异性细胞免疫应答。流感病毒M2与HA双基因共免疫的研究,为研究开发新型重组流感疫苗奠定了基础。  相似文献   

5.
Zhang H  Fayad R  Wang X  Quinn D  Qiao L 《Journal of virology》2004,78(19):10249-10257
Mucosal surfaces are the primary portals for human immunodeficiency virus (HIV) transmission. Because systemic immunization, in general, does not induce effective mucosal immune responses, a mucosal HIV vaccine is urgently needed. For this study, we developed papillomavirus pseudoviruses that express HIV-1 Gag. The pseudoviruses are synthetic, nonreplicating viruses, yet they can produce antigens for a long time in the immune system. Here we show that oral immunization of mice by the use of papillomavirus pseudoviruses encoding Gag generated mucosal and systemic Gag-specific cytotoxic T lymphocytes that effectively lysed Gag-expressing target cells. Furthermore, the pseudoviruses generated Gag-specific gamma interferon-producing T cells and serum immunoglobulin G (IgG) and mucosal IgA. In contrast, oral immunization with plasmid DNA encoding HIV-1 Gag did not induce specific immune responses. Importantly, oral immunization with the pseudoviruses induced Gag-specific memory cytotoxic T lymphocytes and protected mice against a rectal mucosal challenge with a recombinant vaccinia virus expressing HIV-1 Gag. Thus, papillomavirus pseudoviruses encoding Gag are a promising mucosal vaccine against AIDS.  相似文献   

6.
A safe, replication-defective viral vector that can induce mucosal and systemic immune responses and confer protection against many infectious pathogens, such as human immunodeficiency virus type 1 (HIV-1), may be an ideal vaccine platform. Accordingly, we have generated and tested alphavirus replicon particles encoding HIV-1 Gag from Sindbis virus (SIN-Gag) and Venezuelan equine encephalitis virus (VEE-Gag), as well as chimeras between the two (VEE/SIN-Gag). Following intramuscular (i.m.), intranasal (i.n.), or intravaginal (IVAG) immunization with VEE/SIN-Gag and an IVAG challenge with vaccinia virus encoding HIV Gag (VV-Gag), a larger number of Gag-specific CD8+ intracellular gamma interferon-expressing cells (iIFNEC) were detected in iliac lymph nodes (ILN), which drain the vaginal/uterine mucosa (VUM), than were observed after immunizations with SIN-Gag. Moreover, a single i.n. or IVAG immunization with VEE/SIN-Gag induced a larger number of cells expressing HIV Gag in ILN, and immunizations with VEE/SIN-Gag through any route induced better protective responses than immunizations with SIN-Gag. In VUM, a larger percentage of iIFNEC expressed alpha4beta7 or alpha(Ebeta)7 integrin than expressed CD62L integrin. However, in spleens (SP), a larger percentage of iIFNEC expressed alpha4beta7 or CD62L than expressed alpha(Ebeta)7. Moreover, a larger percentage of iIFNEC expressed the chemokine receptor CCR5 in VUM and ILN than in SP. These results demonstrate a better induction of cellular and protective responses following immunizations with VEE/SIN-Gag than that following immunizations with SIN-Gag and also indicate a differential expression of homing and chemokine receptors on iIFNEC in mucosal effector and inductive sites versus systemic lymphoid tissues.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.  相似文献   

8.
Although several human immunodeficiency virus (HIV) vaccine approaches have elicited meaningful antigen-specific T-cell responses in animal models, no single vaccine candidate has engendered antibodies that broadly neutralize primary isolates of HIV type 1 (HIV-1). Thus, there remains a significant gap in the design of HIV vaccines. To address this issue, we exploited the existence of rare human monoclonal antibodies that have been isolated from HIV-infected individuals. Such antibodies neutralize a wide array of HIV-1 field isolates and have been shown to be effective in vivo. However, practical considerations preclude the use of antibody preparations as a prophylactic passive immunization strategy in large populations. Our concept calls for an antibody gene of choice to be transferred to muscle where the antibody molecule is synthesized and distributed to the circulatory system. In these experiments, we used a recombinant adeno-associated virus (rAAV) vector to deliver the gene for the human antibody IgG1b12 to mouse muscle. Significant levels of HIV-neutralizing activity were found in the sera of mice for over 6 months after a single intramuscular administration of the rAAV vector. This approach allows for predetermination of antibody affinity and specificity prior to "immunization" and avoids the need for an active humoral immune response against the HIV envelope protein.  相似文献   

9.
在真核表达载体pVAX1中的CMV启动子下游插入IL-2基因,构建真核表达质粒pVAXIL2。将它与表达I型人免疫缺陷病毒(Humanimmunodeficiencyvirus1,HIV-1)gag-gp120的核酸疫苗质粒pVAXGE共同肌肉注射BALB/c小鼠,免疫3次后,以ELISA法检测免疫小鼠血清中抗HIV-1抗体水平,结果显示联合免疫组小鼠在免疫2周后已有抗体产生,6周后进入高峰。乳酸脱氢酶释放法检测免疫小鼠脾特异性CTL杀伤活性,结果显示联合免疫组小鼠脾特异性CTL杀伤活性显著高于pVAXGE单独免疫组(P<0.05)和载体质粒pVAX1对照组(P<0.01)。以上结果表明:HIV-1核酸疫苗质粒pVAXGE与真核表达质粒pVAXIL2联合免疫可诱导特异性体液免疫和细胞免疫应答,且免疫应答水平高于pVAXGE单独免疫组,IL-2发挥了免疫佐剂的作用,增强了核酸疫苗的免疫原性。  相似文献   

10.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

11.
We have recently developed a candidate human immunodeficiency virus type 1 (HIV-1) vaccine model, based on virus-like particles (VLPs) expressing gp120 from a Ugandan HIV-1 isolate of clade A (HIV-VLP(A)s), which shows the induction of neutralizing antibodies as well as cytotoxic T lymphocytes (CTL) in BALB/c mice by intraperitoneal (i.p.) administration. In the present study, immunization experiments based on a multiple-dose regimen have been performed with BALB/c mice to compare different routes of administration. i.p. and intranasal (i.n.), but not oral, administration induce systemic as well as mucosal (vaginal and intestinal) immunoglobulin G (IgG) and IgA responses. These immune sera exhibit >50% ex vivo neutralizing activity against both autologous and heterologous primary isolates. Furthermore, the administration of HIV-VLP(A)s by the i.n. immunization route induces a specific CTL activity, although at lower efficiency than the i.p. route. The HIV-VLP(A)s represent an efficient strategy to stimulate both arms of immunity; furthermore, the induction of specific humoral immunity at mucosal sites, which nowadays represent the main port of entry for HIV-1 infection, is of great interest. All these properties, and the possible cross-clade in vivo protection, could make these HIV-VLP(A)s a good candidate for a mono- and multicomponent worldwide preventive vaccine approach not restricted to high-priority regions, such as sub-Saharan countries.  相似文献   

12.
In an effort to develop a more effective genetic immunization strategy for HIV, we developed an HIV-2 env DNA vaccine and evaluated three adjuvant formulations. The gp140 gene from HIV-2(UC2 )was synthesized using mammalian codons and cloned into a plasmid vector that expresses eukaryotic genes at high levels. We found that after three immunizations in mice, a novel cationic liposome formulation (Vaxfectin) was superior at inducing systemic and mucosal antibody responses compared to a naked DNA, a controlled release device (an Alzet minipump) and polysaccharide microparticles made from chitosan (P = 0.027). Vaxfectin also induced higher levels of systemic antibodies for each isotype and IgG subclass as well as levels of HIV-2-specific mucosal IgA (P = 0.034). When different routes of immunization were used with the Vaxfectin formulation, gp140-specific systemic antibody responses were highest by the intradermal route, mucosal antibody responses were highest by the intramuscular route, while the intranasal route was the least effective. These results suggest that this cationic liposome formulation is an important adjuvant to improve the effectiveness of genetic immunization strategies for AIDS, and that multiple routes of immunization should be employed for optimal efficacy for HIV vaccine candidates.  相似文献   

13.
Zhang H  Huang Y  Fayad R  Spear GT  Qiao L 《Journal of virology》2004,78(15):8342-8348
Human immunodeficiency virus type 1 (HIV-1) envelope-specific neutralizing antibodies are generated late after initial infection, and the neutralizing antibody response is weak in the infected individuals. Administration of neutralizing antibodies such as 2F5 to HIV-1-infected individuals resulted in reductions in viral loads. Because HIV-1 is transmitted mainly via mucosa and because HIV-specific neutralizing antibodies reduce HIV-1 in infected individuals, a vaccine that can induce both mucosal and systemic HIV-1-specific neutralizing antibodies may be used to prevent and to treat HIV-1 infection. In this study, we made a bovine papillomavirus (BPV) L1-HIV-1 gp41 fusion protein in which ELDKWA of gp41 was inserted into the N terminus of BPV L1 (amino acids 130 to 136). Expression of the fusion protein in insect cells led to the assembly of chimeric virus-like particles (CVLPs). The CVLPs had sizes similar to those of BPV particles and were able to bind to the cell surface and penetrate the cell membrane. Oral immunization of mice with CVLPs induced gp41-specific serum immunoglobulin G (IgG) and intestinal secretory IgA. However, intramuscular immunization with the CVLPs resulted in similar amounts of gp41-specific IgG but low levels of secretory IgA. The antibodies specifically recognized the fixed HIV-1 gp41 on the cell surface. Importantly, the sera and fecal extracts from mice orally immunized with the CVLPs neutralized HIV-1(MN) in vitro. Thus, BPV-HIV-1 gp41 CVLPs may be used to prevent and to treat HIV-1 infection.  相似文献   

14.
Preclinical studies have shown that the induction of secretory IgA (sIgA) in mucosa and neutralizing antibodies (NAbs) in sera is essential for designing vaccines that can effectively block the transmission of HIV-1. We previously showed that a vaccine consisting of bacterium-like particles (BLPs) displaying Protan-gp120AE-MTQ (PAM) could induce mucosal immune responses through intranasal (IN) immunization in mice and NAbs through intramuscular (IM) immunization in guinea pigs. Here, we evaluated the ability of this vaccine BLP-PAM to elicit HIV-1-specific mucosal and systemic immune responses through IN and IM immunization combination strategies in rhesus macaques. First, the morphology, antigenicity and epitope accessibility of the vaccine were analysed by transmission electron microscopy, bio-layer interferometry and ELISA. In BLP-PAM-immunized macaques, HIV-1-specific sIgA were rapidly induced through IN immunization in situ and distant mucosal sites, although the immune responses are relatively weak. Furthermore, the HIV-1-specific IgG and IgA antibody levels in mucosal secretions were enhanced and maintained, while production of serum NAbs against heterologous HIV-1 tier 1 and 2 pseudoviruses was elicited after IM boost. Additionally, situ mucosal responses and systemic T cell immune responses were improved by rAd2-gp120AE boost immunization via the IN and IM routes. These results suggested that BLP-based delivery in combination with the IN and IM immunization approach represents a potential vaccine strategy against HIV-1.  相似文献   

15.
Previously, we constructed a chimeric influenza virus that expresses the highly conserved amino acid sequence ELDKWA of gp41 of human immunodeficiency virus type 1 (HIV-1). Antisera elicited in mice by infection with this chimeric virus showed neutralizing activity against distantly related HIV-1 isolates (T. Muster, R. Guinea, A. Trkola, M. Purtscher, A. Klima, F. Steindl, P. Palese, and H. Katinger, J. Virol. 68:4031-4034, 1994). In the present study, we demonstrated that intranasal immunizations with this chimeric virus are also able to induce a humoral immune response at the mucosal level. The immunized mice had ELDKWA-specific immunoglobulins A in respiratory, intestinal, and vaginal secretions. Sustained levels of these secretory immunoglobulins A were detectable for more than 1 year after immunization. The results show that influenza virus can be used to efficiently induce secretory antibodies against antigens from foreign pathogens. Since long-lasting mucosal immunity in the genital and intestinal tracts might be essential for protective immunity against HIV-1, influenza virus appears to be a promising vector for HIV-1-derived immunogens.  相似文献   

16.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

17.
Vaccines intended to prevent mucosal transmission of HIV should be able to induce multiple immune effectors in the host including Abs and cell-mediated immune responses at mucosal sites. The aim of this study was to characterize and to enhance the immunogenicity of a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 Env IIIB Ag (MVAenv) inoculated in BALB/c mice by mucosal routes. Intravaginal inoculation of MVAenv was not immunogenic, whereas intranasally it induced a significant immune response to the HIV Ag. Intranasal codelivery of MVAenv plus cholera toxin (CT) significantly enhanced the cellular and humoral immune response against Env in the spleen and genitorectal draining lymph nodes, respectively. Heterologous DNAenv prime-MVAenv boost by intranasal immunization, together with CT, produced a cellular immune response in the spleen 10-fold superior to that in the absence of CT. A key finding of these studies was that both MVAenv/MVAenv and DNAenv/MVAenv schemes, plus CT, induced a specific mucosal CD8(+) T cell response in genital tissue and draining lymph nodes. In addition, both immunizations also generated systemic Abs, and more importantly, mucosal IgA and IgG Abs in vaginal washings. Specific secretion of beta-chemokines was also generated by both immunizations, with a stronger response in mice immunized by the DNA-CT/MVA-CT regimen. Our findings are of relevance in the area of vaccine development and support the optimization of protocols of immunization based on MVA as vaccine vectors to induce mucosal immune responses against HIV.  相似文献   

18.
Replication-defective adenovirus (ADV) vectors represent a promising potential platform for the development of a vaccine for AIDS. Although this vector is typically administered intramuscularly, it would be desirable to induce mucosal immunity by delivery through alternative routes. In this study, the immune response and biodistribution of ADV vectors delivered by different routes were evaluated. ADV vectors expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env were delivered intramuscularly or intranasally into mice. Intranasal immunization induced greater HIV-specific immunoglobulin A (IgA) responses in mucosal secretions and sera than in animals with intramuscular injection, which showed stronger systemic cellular and IgG responses. Administration of the vaccine through an intranasal route failed to overcome prior ADV immunity. Animals exposed to ADV prior to vaccination displayed substantially reduced cellular and humoral immune responses to HIV antigens in both groups, though the reduction was greater in animals immunized intranasally. This inhibition was partially overcome by priming with a DNA expression vector expressing HIV-1 Gag, Pol, and Env before boosting with the viral vector. Biodistribution of recombinant adenovirus (rADV) vectors administered intranasally revealed infection of the central nervous system, specifically in the olfactory bulb, possibly via retrograde transport by olfactory neurons in the nasal epithelium, which may limit the utility of this route of delivery of ADV vector-based vaccines.  相似文献   

19.
Human immunodeficiency virus (HIV) can be transmitted through infected seminal fluid or vaginal or rectal secretions during heterosexual or homosexual intercourse. To prevent mucosal transmission and spread to the regional lymph nodes, an effective vaccine may need to stimulate immune responses at the genitourinary mucosa. In this study, we have developed a mucosal model of genital immunization in male rhesus macaques, by topical urethral immunization with recombinant simian immunodeficiency virus p27gag, expressed as a hybrid Ty virus-like particle (Ty-VLP) and covalently linked to cholera toxin B subunit. This treatment was augmented by oral immunization with the same vaccine but with added killed cholera vibrios. Polymeric secretory immunoglobulin A (sIgA) and IgG antibodies to p27 were induced in urethral secretions, urine, and seminal fluid. This raises the possibility that the antibodies may function as a primary mucosal defense barrier against SIV (HIV) infection. The regional lymph nodes which constitute the genital-associated lymphoid tissue contained p27-specific CD4+ proliferative and helper T cells for antibody synthesis by B cells, which may function as a secondary immune barrier to infection. Blood and splenic lymphocytes also showed p27-sensitized CD4+ T cells and B cells in addition to serum IgG and IgA p27-specific antibodies; this constitutes a third level of immunity against dissemination of the virus. A comparison of genito-oral with recto-oral and intramuscular routes of immunization suggests that only genito-oral immunization elicits specific sIgA and IgG antibodies in the urine, urethra, and seminal fluid. Both genito-oral and recto-oral immunizations induced T-cell and B-cell immune responses in regional lymph nodes, with preferential IgA antibody synthesis. The mucosal route of immunization may prevent not only virus transmission through the genital mucosa but also dissemination and latency of the virus in the draining lymph nodes.  相似文献   

20.
Y Wang  Z Xiang  S Pasquini    H C Ertl 《Journal of virology》1997,71(5):3677-3683
An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune response to the rabies virus glycoprotein, as presented by the Adrab.gp vaccine, on the other hand, was not impaired by maternal immunity. Even neonatal immunization of mice born to rabies virus-immune dams with Adrab.gp construct resulted in a long-lasting protective immune response to rabies virus, suggesting that this type of vaccine could be useful for immunization shortly after birth. Nevertheless, pups born to Adrab.gp virus-immune dams showed an impaired immune response to the rabies virus glycoprotein upon vaccination with the Adrab.gp virus, indicating that maternal immunity to the vaccine carrier affected the offspring's immune response to rabies virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号