首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we compared different methods-including transmission electron microscopy-and various nucleic acid labeling methods in which we used the fluorochromes 4',6'-diamidino-2-phenylindole (DAPI), 4-[3-methyl-2,3-dihydro-(benzo-1, 3-oxazole)-2-methylmethyledene]-1-(3'-trimethyl ammoniumpropyl)-quinilinium diioide (YOPRO-1), and SYBR Green I, which can be detected by epifluorescence microscopy (EM), for counting viruses in samples obtained from freshwater ecosystems whose trophic status varied and from a culture of T7 phages. From a quantitative and qualitative viewpoint, our results showed that the greatest efficiency for all ecosystems was obtained when we used the EM counting protocol in which YOPRO-1 was the label, as this fluorochrome exhibited strong and very stable fluorescence. A modification of the original protocol in which YOPRO-1 was used is recommended, because this modification makes the protocol faster and allows it to be used for routine analysis of fixed samples. Because SYBR Green I fades very quickly, the use of this fluorochrome is not recommended for systems in which the viral content is very high (>10(8) particles/ml), such as treated domestic sewage effluents. Experiments in which we used DNase and RNase revealed that the number of viruses determined by EM was slightly overestimated (by approximately 15%) because of interference caused by the presence of free nucleic acids.  相似文献   

2.
High background fluorescence and unspecific staining hampered the epifluorescence enumeration of bacteria in 45% of the tested soil and sediment samples with 4′,6-diamidino-2-phenylindole (DAPI) and polycarbonate membrane filters. These problems of the determination of total cell counts can be circumvented by using green fluorescent high-affinity nucleic acid dyes and aluminum oxide membrane filters. Due to the bright staining of cells, we recommend SYBR Green II as dye.  相似文献   

3.
Bacterial populations display high heterogeneity in viability and physiological activity at the single-cell level, especially under stressful conditions. We demonstrate a novel staining protocol for multiparameter assessment of individual cells in physiologically heterogeneous populations of cyanobacteria. The protocol employs fluorescent probes, i.e., redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, ‘dead cell’ nucleic acid stain SYTOX Green, and DNA-specific fluorochrome 4′,6-diamidino-2-phenylindole, combined with microscopy image analysis. Our method allows simultaneous estimates of cellular respiration activity, membrane and nucleoid integrity, and allows the detection of photosynthetic pigments fluorescence along with morphological observations. The staining protocol has been adjusted for, both, laboratory and natural populations of the genus Phormidium (Oscillatoriales), and tested on 4 field-collected samples and 12 laboratory strains of cyanobacteria. Based on the mentioned cellular functions we suggest classification of cells in cyanobacterial populations into four categories: (i) active and intact; (ii) injured but active; (iii) metabolically inactive but intact; (iv) inactive and injured, or dead.  相似文献   

4.
Optimization of Procedures for Counting Viruses by Flow Cytometry   总被引:10,自引:5,他引:5       下载免费PDF全文
The development of sensitive nucleic acid stains, in combination with flow cytometric techniques, has allowed the identification and enumeration of viruses in aquatic systems. However, the methods used in flow cytometric analyses of viruses have not been consistent to date. A detailed evaluation of a broad range of sample preparations to optimize counts and to promote the consistency of methods used is presented here. The types and concentrations of dyes, fixatives, dilution media, and additives, as well as temperature and length of incubation, dilution factor, and storage conditions were tested. A variety of different viruses, including representatives of phytoplankton viruses, cyanobacteriophages, coliphages, marine bacteriophages, and natural mixed marine virus communities were examined. The conditions that produced optimal counting results were fixation with glutaraldehyde (0.5% final concentration, 15 to 30 min), freezing in liquid nitrogen, and storage at −80°C. Upon thawing, samples should be diluted in Tris-EDTA buffer (pH 8), stained with SYBR Green I (a 5 × 10−5 dilution of commercial stock), incubated for 10 min in the dark at 80°C, and cooled for 5 min prior to analysis. The results from examinations of storage conditions clearly demonstrated the importance of low storage temperatures (at least −80°C) to prevent strong decreases (occasionally 50 to 80% of the total) in measured total virus abundance with time.  相似文献   

5.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5′-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

6.
Semiautomated detection and counting techniques for microbial cells in soil and marine sediment using microscopic-spectral-imaging analysis were developed. Microbial cells in microscopic fields were selectively detected from other fluorescent particles by their fluorescent spectrum, based on the spectral shift between the conjunction and nonconjunction of DNA fluorochrome (SYBR Green II) with nucleic acids. Using this technique, microbial cells could be easily detected in soil and 30-cm deep sediment samples from Tokyo Bay, both of which contain particles other than microbial cells. Total cell density was semiautomatically estimated at 1-6 x 10(9) cells cm(-3) of sediment sampled at different depths in Tokyo Bay, which corresponded to 65-106% (mean 88%) of visual direct counting. This technique may be useful for detecting microbial cells in soil and sediment samples from the deeper subsurface environment.  相似文献   

7.
Here we present MethylQuant, a novel method that allows accurate quantification of the methylation level of a specific cytosine within a complex genome. This method relies on the well-established treatment of genomic DNA with sodium bisulfite, which converts cytosine into uracil without modifying 5-methyl cytosine. The region of interest is then PCR-amplified and quantification of the methylation status of a specific cytosine is performed by methylation-specific real-time PCR with SYBR Green I using one of the primers whose 3′ end discriminates between the methylation states of this cytosine. The presence of a locked nucleic acid at the 3′ end of the discriminative primer provides the specificity necessary for accurate and sensitive quantification, even when one of the methylation states is present at a level as low as 1% of the overall population. We demonstrate that accurate quantification of the methylation status of specific cytosines can be achieved in biological samples. The method is high-throughput, cost-effective, relatively simple and does not require any specific equipment other than a real-time PCR instrument.  相似文献   

8.
The 5′ end of the genomic RNA of rubella virus (RUB) contains a 14-nucleotide (nt) single-stranded leader (ss-leader) followed by a stem-and-loop structure [5′(+)SL] (nt 15 to 65), the complement of which at the 3′ end of the minus-strand RNA [3′(−)SL] has been proposed to function as a promoter for synthesis of genomic plus strands. A second intriguing feature of the 5′ end of the RUB genomic RNA is the presence of a short (17 codons) open reading frame (ORF) located between nt 3 and 54; the ORF encoding the viral nonstructural proteins (NSPs) initiates at nt 41 in an alternate translational frame. To address the functional significance of these features, we compared the 5′-terminal sequences of six different strains of RUB, with the result that the short ORF is preserved (although the coding sequence is not conserved) as is the stem part of both the 5′(+)SL and 3′(−)SL, while the upper loop part of both structures varies. Next, using Robo302, an infectious cDNA clone of RUB, we introduced 31 different mutations into the 5′-terminal noncoding region, and their effects on virus replication and macromolecular synthesis were examined. This mutagenesis revealed that the short ORF is not essential for virus replication. The AA dinucleotide at nt 2 and 3 is of critical importance since point mutations and deletions that altered or removed both of these nucleotides were lethal. None of the other mutations within either the ss-leader or the 5′(+)SL [and accordingly within the 3′(−)SL], including deletions of up to 15 nt from the 5′(+)SL and three different multiple-point mutations that lead to destabilization of the 5′(+)SL, were lethal. Some of the mutations within both ss-leader and the 5′(+)SL resulted in viruses that grew to lower titers than the wild-type virus and formed opaque and/or small plaques; in general mutations within the stem had a more profound effect on viral phenotype than did mutations in either the ss-leader or upper loop. Mutations in the 5′(+)SL, but not in the ss-leader, resulted in a significant reduction in NSP synthesis, indicating that this structure is important for efficient translation of the NSP ORF. In contrast, viral plus-strand RNA synthesis was unaffected by the 5′(+)SL mutations as well as the ss-leader mutations, which argues against the proposed function of the 3′(−)SL as a promoter for initiation of the genomic plus-strand RNA.  相似文献   

9.
The determination of cell numbers or biomass in laboratory cultures or environmental samples is usually based on turbidity measurements, viable counts, biochemical determinations (e.g., protein and lipid measurements), microscopic counting, or recently, flow cytometric analysis. In the present study, we developed a novel procedure for the sensitive quantification of microbial cells in cultures and most-probable-number series. The assay combines fluorescent nucleic acid staining and subsequent fluorescence measurement in suspension. Six different fluorescent dyes (acridine orange, DAPI [4′,6′-diamidino-2-phenylindole], ethidium bromide, PicoGreen, and SYBR green I and II) were evaluated. SYBR green I was found to be the most sensitive dye and allowed the quantification of 50,000 to up to 1.5 × 108 Escherichia coli cells per ml sample. The rapid staining procedure was robust against interference from rRNA, sample fixation by the addition of glutaric dialdehyde, and reducing agents such as sodium dithionite, sodium sulfide, and ferrous sulfide. It worked well with phylogenetically distant bacterial and archaeal strains. Excellent agreement with optical density measurements of cell increases was achieved during growth experiments performed with aerobic and sulfate-reducing bacteria. The assay offers a time-saving, more sensitive alternative to epifluorescence microscopy analysis of most-probable-number dilution series. This method simplifies the quantification of microbial cells in pure cultures as well as enrichments and is particularly suited for low cell densities.  相似文献   

10.
Reliable analytical techniques to test growth-promoting and antimalarial efficacy on plasmodia are very important. Flow cytometry (FCM) offers the possibility to study developmental stages of intraerythrocytic growth of malaria parasites using nucleic acid staining. To analyze the growth of Plasmodium falciparum SYBR Green I was introduced as an intercalating dye with FCM for the 488 nm line of an argon laser. Procedures employing FCM, including fixatives, dye concentrations, dilution buffer, and staining period, were optimized to simplify the method. FCM as described here allows parasitemia and parasites of different stages to be quantified according to the DNA content. The proportion of parasitized erythrocytes estimated by FCM and the Giemsa method agreed with determination by parasite lactate dehydrogenase. The protocol was extended to merozoite counting as a sensitive assay of growth inhibition of the parasite.  相似文献   

11.
Total bacterial abundances estimated with different epifluorescence microscopy methods (4′,6-diamidino-2-phenylindole [DAPI], SYBR Green, and Live/Dead) and with flow cytometry (Syto13) showed good correspondence throughout two microcosm experiments with coastal Mediterranean water. In the Syto13-stained samples we could differentiate bacteria with apparent high DNA (HDNA) content and bacteria with apparent low DNA (LDNA) content. HDNA bacteria, “live” bacteria (determined as such with the Molecular Probes Live/Dead BacLight bacterial viability kit), and nucleoid-containing bacteria (NuCC) comprised similar fractions of the total bacterial community. Similarly, LDNA bacteria and “dead” bacteria (determined with the kit) comprised a similar fraction of the total bacterial community in one of the experiments. The rates of change of each type of bacteria during the microcosm experiments were also positively correlated between methods. In various experiments where predator pressure on bacteria had been reduced, we detected growth of the HDNA bacteria without concomitant growth of the LDNA bacteria, such that the percentage contribution of HDNA bacteria to total bacterial numbers (%HDNA) increased. This indicates that the HDNA bacteria are the dynamic members of the bacterial assemblage. Given how quickly and easily the numbers of HDNA and LDNA bacteria can be obtained, and given the similarity to the numbers of “live” cells and NuCC, the %HDNA is suggested as a reference value for the percentage of actively growing bacteria in marine planktonic environments.  相似文献   

12.
A novel nucleic acid stain, SYBR Gold, was used to stain marine viral particles in various types of samples. Viral particles stained with SYBR Gold yielded bright and stable fluorescent signals that could be detected by a cooled charge-coupled device camera or by flow cytometry. The fluorescent signal strength of SYBR Gold-stained viruses was about twice that of SYBR Green I-stained viruses. Digital images of SYBR Gold-stained viral particles were processed to enumerate the concentration of viral particles by using digital image analysis software. Estimates of viral concentration based on digitized images were 1.3 times higher than those based on direct counting by epifluorescence microscopy. Direct epifluorescence counts of SYBR Gold-stained viral particles were in turn about 1.34 times higher than those estimated by the transmission electron microscope method. Bacteriophage lysates stained with SYBR Gold formed a distinct population in flow cytometric signatures. Flow cytometric analysis revealed at least four viral subpopulations for a Lake Erie sample and two subpopulations for a Georgia coastal sample. Flow cytometry-based viral counts for various types of samples averaged 1.1 times higher than direct epifluorescence microscopic counts. The potential application of digital image analysis and flow cytometry for rapid and accurate measurement of viral abundance in aquatic environments is discussed.  相似文献   

13.
A novel nucleic acid stain, SYBR Gold, was used to stain marine viral particles in various types of samples. Viral particles stained with SYBR Gold yielded bright and stable fluorescent signals that could be detected by a cooled charge-coupled device camera or by flow cytometry. The fluorescent signal strength of SYBR Gold-stained viruses was about twice that of SYBR Green I-stained viruses. Digital images of SYBR Gold-stained viral particles were processed to enumerate the concentration of viral particles by using digital image analysis software. Estimates of viral concentration based on digitized images were 1.3 times higher than those based on direct counting by epifluorescence microscopy. Direct epifluorescence counts of SYBR Gold-stained viral particles were in turn about 1.34 times higher than those estimated by the transmission electron microscope method. Bacteriophage lysates stained with SYBR Gold formed a distinct population in flow cytometric signatures. Flow cytometric analysis revealed at least four viral subpopulations for a Lake Erie sample and two subpopulations for a Georgia coastal sample. Flow cytometry-based viral counts for various types of samples averaged 1.1 times higher than direct epifluorescence microscopic counts. The potential application of digital image analysis and flow cytometry for rapid and accurate measurement of viral abundance in aquatic environments is discussed.  相似文献   

14.
Ethidium bromide (EtBr) and SYBR Green I are nucleic acid gel stains and used commonly in combination with UV-illumination. EtBr preferentially induces frameshift mutations but only in the presence of an exogenous metabolic activation system, while SYBR Green I is a very weak mutagen that induces frameshift mutations. We found that EtBr and SYBR Green I, without an added metabolic activation system, strongly potentiated the base-substitution mutations induced by UV-irradiation in E. coli B/r WP2 cells. Each DNA stain alone showed no mutagenicity to the strain. Base-substitutions induced by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and 4-nitroquinoline-1-oxide were similarly potentiated by EtBr and SYBR Green I. SYBR Green I had a much greater effect. No enhancing effects were observed on mutations induced by mitomycin C, cisplatin, transplatin, cumene hydroperoxide, base analogs, and alkylating agents. Another DNA stain, acridine orange, showed similar enhancing effects on UV- and MX-mutagenicity, but no effect was observed for 4',6-diamidino-2-phenylindole (DAPI). UV- and MX-induced mutations in E. coli WP2s (uvrA), which is defective in nucleotide excision repair activity, were not potentiated by the addition of EtBr, SYBR Green I, or acridine orange. Those nucleic acid stains might inhibit the nucleotide excision repair of DNA damaged by UV and MX treatment.  相似文献   

15.
The minor groove binding asymmetric cyanine dye 4-[(3-methyl-6-(benzothiazol-2-yl)-2,3-dihydro- (benzo-1,3-thiazole)-2-methylidene)]-1-methyl-pyridin ium iodide (BEBO) is tested as sequence non- specific label in real-time PCR. The fluorescence intensity of BEBO increases upon binding to double-stranded DNA allowing emission to be measured at the end of the elongation phase in the PCR cycle. BEBO concentrations between 0.1 and 0.4 µM generated sufficient fluorescence signal without inhibiting the PCR. A comparison with the commonly used reporter dye SYBR Green I shows that the two dyes behave similarly in all important aspects.  相似文献   

16.
RNA viruses recruit the host translational machinery by different mechanisms that depend partly on the structure of their genomes. In this regard, the plus-strand RNA genomes of several different pathogenic plant viruses do not contain traditional translation-stimulating elements, i.e., a 5′-cap structure and a 3′-poly(A) tail, and instead rely on a 3′-cap-independent translational enhancer (3′CITE) located in their 3′ untranslated regions (UTRs) for efficient synthesis of viral proteins. We investigated the structure and function of the I-shaped class of 3′CITE in tombusviruses—also present in aureusviruses and carmoviruses—using biochemical and molecular approaches and we determined that it adopts a complex higher-order RNA structure that facilitates translation by binding simultaneously to both eukaryotic initiation factor (eIF) 4F and the 5′ UTR of the viral genome. The specificity of 3′CITE binding to eIF4F is mediated, at least in part, through a direct interaction with its eIF4E subunit, whereas its association with the viral 5′ UTR relies on complementary RNA–RNA base-pairing. We show for the first time that this tripartite 5′ UTR/3′CITE/eIF4F complex forms in vitro in a translationally relevant environment and is required for recruitment of ribosomes to the 5′ end of the viral RNA genome by a mechanism that shares some fundamental features with cap-dependent translation. Notably, our results demonstrate that the 3′CITE facilitates the initiation step of translation and validate a molecular model that has been proposed to explain how several different classes of 3′CITE function. Moreover, the virus–host interplay defined in this study provides insights into natural host resistance mechanisms that have been linked to 3′CITE activity.  相似文献   

17.
The highest sensitivity nucleic acid gel stains developed to date are optimally excited using short-wavelength ultraviolet or visible light. This is a disadvantage for laboratories equipped only with 306- or 312-nm UV transilluminators. We have developed a new unsymmetrical cyanine dye that overcomes this problem. This new dye, SYBR Gold nucleic acid gel stain, has two fluorescence excitation maxima when bound to DNA, one centered at approximately 300 nm and one at approximately 495 nm. We found that when used with 300-nm transillumination and Polaroid black-and-white photography, SYBR Gold stain is more sensitive than ethidium bromide, SYBR Green I stain, and SYBR Green II stain for detecting double-stranded DNA, single-stranded DNA, and RNA. SYBR Gold stain's superior sensitivity is due to the high fluorescence quantum yield of the dye-nucleic acid complexes ( approximately 0.7), the dye's large fluorescence enhancement upon binding to nucleic acids ( approximately 1000-fold), and its capacity to more fully penetrate gels than do the SYBR Green gel stains. We found that SYBR Gold stain is as sensitive as silver staining for detecting DNA-with a single-step staining procedure. Finally, we found that staining nucleic acids with SYBR Gold stain does not interfere with subsequent molecular biology protocols.  相似文献   

18.
Antigenes, which are substances that inhibit gene expression by binding to double-stranded DNA (dsDNA) in a sequence-specific manner, are currently sought for the treatment of various gene-related diseases. As such antigenes, we developed new nuclease-resistant oligopyrimidine nucleotides that are partially modified with 2′-O,4′-C-ethylene nucleic acids (ENA), which are constrained in the C3′-endo conformation and can form a triplex with dsDNA at physiological pH. It was found that these oligonucleotides formed triplexes similarly to those partially modified with 2′-O,4′-C-methylene nucleic acids (2′,4′-BNA or LNA), as determined by UV melting analyses, electromobility shift assays, CD spectral analyses and restriction enzyme inhibition assays. In our studies, oligonucleotides fully modified with ENA have δ torsion angle values that are marginally higher than those of 2′,4′-BNA/LNA. ENA oligonucleotides present in 10-fold the amount of dsDNA were found to be favorable in forming triplexes. These results provide useful information for the future design of triplex-forming oligonucleotides fully modified with such nucleic acids constrained in the C3′-endo conformation considering that oligonucleotides fully modified with 2′,4′-BNA/LNA do not form triplexes.  相似文献   

19.
Two novel dATP analogs for DNA photoaffinity labeling   总被引:1,自引:0,他引:1       下载免费PDF全文
Two new photoreactive dATP analogs, N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP), were synthesized from 2′-deoxyadenosine-5′-monophosphate in a six step procedure. Synthesis starts with aminoethylation of dAMP and continues with rearrangement of N1-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate to N6-(2-aminoethyl)-2′-deoxyadenosine-5′-monophosphate (N6-dAMP). Next, N6-dAMP is converted into the triphosphate form by first protecting the N-6 primary amino group before coupling the pyrophosphate. After pyrophosphorylation, the material is deprotected to yield N6-(2-aminoethyl)-2′-deoxyadenosine-5′-triphosphate (N6-dATP). The N-6 amino group is subsequently used to attach either a phenylazide or phenyldiazirine and the photoreactive nucleotide is then enzymatically incorporated into DNA. N6-dATP and its photoreactive analogs AB-dATP and DB-dATP were successfully incorporated into DNA using the exonuclease-free Klenow fragment of DNA polymerase I in a primer extension reaction. UV irradiation of the primer extension reaction with AB-dATP or DB-dATP showed specific photocrosslinking of DNA polymerase I to DNA.  相似文献   

20.
SYBR Green 1 is an asymmetrical cyanine DNA-binding dye that provides an opportunity for increasing the sensitivity of nucleic acid detection when used in conjunction with gel electrophoresis. In this paper, we summarize the general properties and specific uses of SYBR green 1 in ion-pair reversed-phase denaturing high-performance liquid chromatography (IP DHPLC). We describe several applications for the WAVE DHPLC platform that illustrate the generic potential of such intercalating dyes in mutation detection and gene expression profiling. We show that SYBR Green 1 obviates the need to use end-labeled oligodeoxynucleotides for the sensitive detection of nucleic acids during chromatography. Moreover the incorporation of SYBR Green 1 into samples and elution buffers does not impair resolution and has no significant effect on the retention times of DNA fragments compared with dye-free DHPLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号