共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrastructural studies on migrating epidermal cells during the wound healing stage of regeneration in the adult newt, Notophthalmus viridescens 总被引:2,自引:0,他引:2
The ultrastructure of the epidermal cells which migrate over the wound surface of the amputated limb of the adult newt, Notophthalmus viridescens, was observed with transmission (TEM) and scanning (SEM) electron microscopy. In order to aid in the visualization of polyanionic surface materials on the wound epithelium and wound surface with TEM, the basic dye, ruthenium red, was introduced into the fixatives and buffer. Control limbs were processed without ruthenium red. Shortly after amputation, basal cells at the wound margin possessed elongated, flattened profiles with long pseudopodial projections (lamellipodia and filopodia) that appeared to make contact with the fibrin exudate covering the stump tissues. Epidermal cells proximal to the site of amputation were also in a state of mobilization. Large intercellular spaces and a reduction in the number of desmosomes were observed in the migrating cells. Epidermal cell nuclei became characteristically euchromatic with well-developed nucleoli. Microfilaments were seen within the cytoplasm, extending toward the plasma membrane of cellular processes. Phagocytosed material was also present in the migrating cells. By approximately 9 hours post-amputation, wound closure was complete, and the wound epithelium consisted of three to four cell layers of a non-cornified epidermis. Generally, the amount of extracellular material present on the surface and in the enlarged intercellular spaces of migrating epidermal cells remained the same throughout the period of wound closure. A layer of polyanionic material was observed consistently over the fibrin meshwork covering the wound surface with TEM. 相似文献
2.
Lynette R. Robinson Rhodes John J. Turek Edward J. Cragoe Jr Joseph W. Vanable Jr 《Development genes and evolution》1990,198(6):355-362
Summary Wounded amphibian skin heals initially by a migration of epithelial cells from the cut edge towards the center of the wound. The density of currents leaving wounds made in Notophthalmus viridescens skin was manipulated in order to determine whether electrical fields associated with these currents might have a significant role in promoting this cell migration during wound healing. Wounds were made with either a needle (200 m) or a biopsy punch (500 m). Currents leaving the wounds were measured with a vibrating probe, and the wounds fixed at various times after wounding. When the Na+-dependent currents were reduced by blocking Na+ channels with benzamil, wound healing, as revealed by scanning electron microscopy and by paraffin histology, was impaired. These results are consistent with the hypothesis that there is an electrical component to wound healing. 相似文献
3.
4.
It is well documented that growth hormone (GH) replacement therapy will restore normal limb regeneration to hypophysectomized adult newts. However, it is also known that the GH preparations used in previous reports were contaminated by other pituitary hormones shown to support regeneration when administered free of GH. The recent availability of bioengineered human GH was studied for its ability to restore the regenerative capacity to hypophysectomized newts. Five days posthypophysectomy adult newts were subject to forelimb amputation distal to the elbow. Animals were divided into three groups (n greater than 20). Each received one of three GH preparations: pituitary-derived bovine GH, pituitary-derived human GH, or bioengineered human GH. GH was administered via intraperitoneal injection (0.029 IU/50 microliters) on alternate days for either the first 5 days (total of 3 injections) or for 35 days (total of 18 injections). Pituitary-intact and hypophysectomized control newts were subjected to forelimb amputation and injected with hormone diluent. All newts that received GH demonstrated normal limb regeneration to the early digitiform stage by 35 days postamputation. None of the hypophysectomized control newts showed any evidence of regeneration. We conclude that GH alone can restore the ability to undergo normal limb regeneration to hypophysectomized newts. 相似文献
5.
6.
Thomas G. Connelly 《Journal of morphology》1978,158(1):31-40
Adult newts (Notophthalmus viridescens) were lentectomized and at intervals from 4 to 21 days after lentectomy iridocorneal complexes from these animals were examined by scanning electron microscopy to allow a full appreciation for the shape of the regenerating lens. Until around day 12 after lentectomy the posterior surface of the iris is covered by a dense mat of fibrous material which cannot be removed without damage to the iris and which obscures the events of cytoplasmic shedding. The regenerate becomes visible first around stage IV (day 12). A small but clear groove demarcates the regenerate from the rest of the iris. As regeneration progresses there is a marked reduction in debris on the iris surface and the regenerate appears as a U-shaped thickening occupying about one-third of the dorsal half of the iris. During later stages (VI–X) the regenerate protrudes into the pupil inferiorly and posteriorly towards the retina, but does not encroach laterally on the remaining pigmented iris tissue. Prior to secretion of the lens capsule the outline of individual cells is visible on the surface of the regenerate and some regenerates exhibit a prominent dimple on their posterior aspects. Following secretion of the capsule the surface of the regenerate becomes smooth. Quantitative studies show that volume and maximum section area of the regenerate are both more strongly correlated with developmental stage of regeneration than with time after lentectomy. 相似文献
7.
Summary It has been suggested that the immune system might figure prominently in the regulation of forelimb regeneration. However, neither the nature of this influence nor the aspect(s) of regeneration influenced are clearly known. The determination of which components of the immune system are indispensable for regeneration would be a logical first step in attempting to address such questions. This investigation, therefore, examined the effects of removing the spleen, a major lymphoid organ in the newt, upon the progress of regeneration. Splenectomies performed concomitantly with or after forelimb amputation failed to alter the time course of regeneration. Splenectomies, but not sham-splenectomies, performed prior to amputation reduced the time required to achieve successive stages of regeneration under some, but not all conditions, i.e., when performed 10–20 days before amputation, during the late fall and winter. Up until 35 days after amputation, no gross morphological distortions were observed as a result of splenectomy. It was concluded that the spleen is not required for regeneration to occur.Portions of this work constitute part of the thesis submitted by M.E. Fini in partial fulfillment of the requirements for the M.S. degree in Biology at Boston College 相似文献
8.
J A Hightower 《Acta anatomica》1975,92(3):454-466
Lymphocytic activity was examined in thymuses of adult newts by studying the number, location, morphology and fate of cells within thymuses which had been processed for autoradiography 15 min, 2 and 4 h, and 2, 4, and 10 days subsequent to the injection of tritiated thymidine. Results of this study indicate (1) that the adult thymus is a highly proliferative organ, (2) that large and medium-sized lymphocytes present in the peripheral parenchyma give rise to smaller lymphocytes which move centrally and emigrate from the thymus, and (3) that many thymocytes leave the thymus within 2-4 days after they have been produced. The significance of these findings is discussed. 相似文献
9.
In one series of experiments (in vitro), distal portions of cone-stage newt forelimb blastemata were cultured, transfilter to a pair of dorsal root ganglia, both with and without apical epidermis. At the termination of the culture period, the epidermis of the epidermis-intact explants was removed leaving the mesenchymal portion of the blastema for a comparative analysis of cellular activities influenced by the apical epidermal cap (AEC). Blastema explants, in which the AEC had been removed prior to explantation (epidermis free), exhibited decreased DNA synthetic activity and a significantly lower overall mitotic index than the mesenchymal portions of their epidermisintact counterparts. Moreover, cartilage nodules were precociously formed in the epidermis-free explants. In a second series of experiments (in vivo), the distal portion of a cone-stage blastema was removed and the wound epithelium was permitted to reestablish itself over the proximal blastema tissue. The mitotic index of the originally proximal (now distal) mesenchyme, increased as a function of time after reestablishment of the AEC and cartilage differentiation was suppressed, when compared with proximal AEC-free blastema controls. We propose that the developmental pathway (i.e., division or differentiation) followed by blastema cells is influenced by the AEC; the intact AEC provides the “division signal” for cycling cells, which differentiate in its absence. A mechanism for the normal proximodistal progression of cartilage differentiation, in terms of the AEC influence, is discussed. 相似文献
10.
Tassava RA Huang Y 《Journal of experimental zoology. Part A, Comparative experimental biology》2005,303(12):1031-1039
Spinal axons of the adult newt will regenerate when the spinal cord is severed or when the tail is amputated. Ischemia and associated hypoxia have been correlated with poor central nervous system regeneration in mammals. To test the effects of ischemia on newt spinal cord regeneration, the spinal cord and major blood vessels of the newt tail were severed 2 cm caudal to the cloaca as a primary injury. This primary injury severely reduced circulation in the caudal direction for 7 days; by day 8, circulation was largely restored. After various periods of time after primary injury, tails were amputated 1 cm caudal to the primary injury (in the area of ischemia) and tested for regeneration. If the tail was amputated within 5 days of the primary injury, regeneration did not occur. If amputation was 7 days or longer after the primary injury, a regenerative response occurred. Histology showed that in the non-regenerating tails the spinal cord and associated ependyma, known to be important to tail regeneration, had degenerated in the rostral direction. Such degeneration was prevented when tails were first amputated and allowed to form blastemas before the primary injury. The data indicate that the first 5-7 days of blastema formation are particularly sensitive to compromised blood flow (ischemia/hypoxia). It follows that mechanisms must be present in the adult newt to reduce ischemia to a minimum and thus allow ependymal outgrowth and tail regeneration. 相似文献
11.
Summary Previous work has shown that the monoclonal antibody 22/18 identifies progenitor cells (blastemal cells) which depend on the nerve for their division in the early stages of limb regeneration in the newt,Notophthalmus viridescens. This antibody also reacts with cultured cells derived from the newt limb, and the intensity of immunoreactivity appears related to cell density and differentiation into myotubes. We report here that the monoclonal antibody 22/18 recognizes a polypeptide (22/18 antigen) which is intracellular and filamentous. Double staining of cells with 22/18 monoclonal antibody and antibodies against various cytoskeletal components indicates that the epitope is expressed on an intermediate filament component. Although this antibody is specific for blastemal cells in cryostat sections of the regenerating limb, its reactivity on immunoblots is not confined to this tissue. The 22/18 antigen is differentially affected by aldehyde fixatives distinguished by the spacing of their reactive groups. While formaldehyde fixation impairs detection of the antigen, ethylene glycol-bis[succinic acid n-hydroxysuccinimide ester] reveals the antigen in sections of normal and regenerating limbs in a distribution that is consistent with the one obtained from immunoblots. We suggest that the 22/18 monoclonal antibody detects a change in protein conformation, probably related to changes in the physiological state of the cell, that occurs transiently during regeneration and possibly during development. 相似文献
12.
To better understand the mechanisms governing the proliferation of cardiac myocytes it is important to identify the factors controlling this phenomenon, and to characterize their actions. DNA synthesis was quantified in vitro in ventricular myocytes from the adult redspotted newt, Notophthalmus viridescens. Ventricles were enzymatically separated and plated onto laminin. Myocytes were fed modified L-15 medium with 10% fetal bovine serum, and were variously treated with transforming growth factor-beta, transforming growth factor-beta combined with platelet-derived growth factor, acidic fibroblast growth factor, basic fibroblast growth factor, 12-0-tetradecanoylphorbol-13-acetate, heparin, or conditioned medium from ventricular myocytes or non-myocytes (primarily endothelial cells). With their final feeding the cells were given 1 Ci/ml of tritiated thymidine, and 24 hours later were fixed and stained. Dishes were coated with photographic emulsion, exposed, and developed. The percent of cells with labeled nuclei was determined. Experimental media that significantly increased DNA synthesis included those containing acidic fibroblast growth factor (121% of control), basic fibroblast growth factor (119% of control), 12-0-tetradecanoylphorbol-13-acetate (233% of control) and conditioned medium from ventricular myocytes (230% of control) or non-myocytes (128% of control). Media significantly inhibiting DNA synthesis were those containing heparin (31% of control), transforming growth factor-beta (38% of control), non-myocyte conditioned medium and heparin (75% of control), or transforming growth factor-beta and platelet-derived growth factor (63% of control). 相似文献
13.
14.
Cyclic 3', 5'-guanosine monophosphate (cGMP) was measured at eight stages of forelimb regeneration in adult newts and compared with the cGMP levels of non-regenerating control limbs. There was a significant increase in cGMP content during dedifferentiation followed by a sharp decrease to minimal levels at the cone stage. A second smaller increase in cGMP occurred between the cone stage and mid-differentiation, followed by a decrease to relatively constant levels approaching control values as differentiation progressed. The changes in cGMP during dedifferentiation and during the period of highest cell proliferation indicate that cGMP may play a role in these processes. The smaller increases in cGMP levels during differentiation may reflect a reduced rate of cell division in the differentiating tissues. 相似文献
15.
Untreated adult newts do not undergo normal limb regeneration following hypohysectomy. A fibrocellular dermal barrier (cicatrix) atypically forms between the apical epithelium and the underlying mesenchymal tissues. Historically, continuous administration of growth hormone or of prolactin in combination with thyroxine restored regenerative capacity to these newts. In a previous investigation, we demonstrated that the initial effect of these two hormone treatments, when administered on alternate days to hypophysectomized newts beginning eight days post-amputation, was to facilitate the erosion of the fibrocellular barrier and establish the epithelial mesenchymal interface that is observed in a regenerating limb. The present investigation was designed to evaluate the necessity of continuous hormone therapy to maintain limb regeneration in hypophysectomized newts. One, two, or three injections of growth hormone or of prolactin in combination with thyroxine was administered on successive alternate days to hypophysectomized newts either immediately following limb amputation (ID) or beginning eight days post-amputation (DD). The ID and DD newts receiving one, two, or three injections of growth hormone showed evidence of regeneration to the digitiform stage by day 30 post-amputation, while those receiving prolactin and thyroxine underwent wound healing. While both hormone treatments initially promoted a dermis-free apical epithelium, only hypophysectomized newts that had received growth hormone were able to continue regenerating. We have, therefore, concluded that discontinuous growth hormone therapy is sufficient to initiate and maintain the conducive environment for limb regeneration to advanced stages in the hypophysectomized newt. While initiating this process, prolactin and thyroxine therapy on a discontinuous regime does not maintain regeneration. The direct and indirect role of growth hormone in supporting limb regeneration in normal and hypophysectomized newts is discussed. 相似文献
16.
Using indirect immunofluorescence methods, we have localized for the first time in the newt, Notophthalmus viridescens, beta-endorphin (beta-ep)-like immunoreactivity in the neurons of spinal ganglia (SPG), spinal cord (SPC), as well as in the hypothalamic region of the brain. An examination of serially sectioned SPG showed that the beta-ep-positive neurons, cell bodies, and nerve fibers were distributed at all levels of SPG. Peripheral regions of the perikarya of beta-ep-positive SPG neurons exhibited intense staining for beta-ep, the central nuclear region remaining nonreactive. In SPC, brightly staining fibers were seen entering the afferent nociceptive input areas, namely the Lissauer's tracts, substantia gelatinosa, and the dorsal ascending columns. Dot-fiber immunofluorescence pattern was observed throughout the gray matter of SPC representing beta-ep-positive, secondary sensory neurons as well as interneurons. Also, discrete cluster of neurons located deep in the gray matter of SPC stained positively to beta-ep antisera. This study not only demonstrates for the first time the presence of beta-ep like material in the newt, more specifically in SPG and SPC, but also raises the question of a possible link between beta-ep and newt limb regeneration as previous work has shown that SPG support limb regeneration in a denervated-amputated newt forelimb. 相似文献
17.
18.
T G Connelly M S Green W M Sahijdak R M Loyd 《The Journal of experimental zoology》1986,240(3):343-351
Removal of the lens from the eye of an adult newt (Notophthalmus viridescens) is followed by regeneration of a new lens from the dorsal iris epithelial cells at the pupillary margin. This process is dependent upon the neural retina for its normal completion in vivo and in vitro. To examine the relationship between the retina and lens regeneration, we have conducted experiments that delimit the time period during which the retinal presence is critical (in vivo) and have investigated the influence of extracts of the retina on the progress of regeneration (in vitro). In vivo, removal of the retina at day 11 seriously retards further progression of regeneration while removal of the retina at day 15 does not retard regeneration significantly. This defines a "critical period" in regeneration of the lens during which the retina is required. Explantation of regenerates 11 or 12 days after lentectomy to organ culture medium enriched with either crude retinal homogenate or extracts prepared from chick or bovine retinas according to Courty et al. ('85, Biochimie, 67:265-269) reveals that the progress of regeneration can be supported in culture by the crude extract. This is the first demonstration of complete iris-lens transformation in culture in the presence of retinal extract. It is possible that the retina acts indirectly by promoting passage of the iris epithelial cells through the critical number of mitoses required before redifferentiation into lens cells can occur (as proposed by Yamada, '77, Monogr. Dev. Biol., 13:126). It is also possible that the retina acts by directly instructing the iris cells to redifferentiate.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
The current study is designed to demonstrate the presence of immunoreactive insulin (IRI), glucagon and somatostatin in the adult pancreas. Methods include aldehyde fuchsin (AF) staining and peroxidase anti-peroxidase (PAP) immunochemical localization for light microscopy as well as protein A gold (PAG) staining for scanning electron microscopy (SEM) in conjunction with backscattered electron imaging (BEI). Our results show the presence of large clusters of AF-positive cells within networks of highly vascularized pancreatic acinar tissue. PAP immunochemistry of pancreas serial sections exhibit positive immunoreactivity to the same AF-positive structure, thus demonstrating the presence of IRI. This immunoreactivity is found in a high percentage of cells in the islet-like structures. These cells tend to be centrally located within the cluster. Antibody specificity controls, including homologous antigen immunoabsorbance, as well as incubation of sections in normal guinea pig serum give negative immunoreactivity. Immunoreactive glucagon-containing cells and somatostatin-containing cells are distributed around the periphery of the central core of IRI-containing cells. SEM in conjunction with BEI confirm the presence of PAG within these cell clusters. We conclude that: (a) newt pancreatic IRI reacts in a specific manner with bovine antibody, suggesting a partial structural similarity to mammalian antigen; (b) IRI is localized within within pancreatic islet-like cell clusters and these IRI-containing cells form a central mass which is surrounded by glucagon and somatostatin-containing cells; this cellular distribution is similar to that found in many mammals. PAG conjugated insulin antibody is detectable by SEM in conjunction with BEI in islet cells of the newt pancreas. 相似文献