首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Earlier studies have shown that (i) the coding domain of the alpha22 gene encodes two proteins, the 420-amino-acid infected-cell protein 22 (ICP22) and a protein, US1.5, which is initiated from methionine 147 of ICP22 and which is colinear with the remaining portion of that protein; (ii) posttranslational processing of ICP22 mediated largely by the viral protein kinase UL13 yields several isoforms differing in electrophoretic mobility; and (iii) mutants lacking the carboxyl-terminal half of the ICP22 and therefore DeltaUS1.5 are avirulent and fail to express normal levels of subsets of both alpha (e.g., ICP0) or gamma2 (e.g., US11 and UL38) proteins. We have generated and analyzed two sets of recombinant viruses. The first lacked portions of or all of the sequences expressed solely by ICP22. The second set lacked 10 to 40 3'-terminal codons of ICP22 and US1. 5. The results were as follows. (i) In cells infected with mutants lacking amino-terminal sequences, translation initiation begins at methionine 147. The resulting protein cannot be differentiated in mobility from authentic US1.5, and its posttranslational processing is mediated by the UL13 protein kinase. (ii) Expression of US11 and UL38 genes by mutants carrying only the US1.5 gene is similar to that of wild-type parent virus. (iii) Mutants which express only US1. 5 protein are avirulent in mice. (iv) The coding sequences Met147 to Met171 are essential for posttranslational processing of the US1.5 protein. (v) ICP22 made by mutants lacking 15 or fewer of the 3'-terminal codons are posttranslationally processed whereas those lacking 18 or more codons are not processed. (vi) Wild-type and mutant ICP22 proteins localized in both nucleus and cytoplasm irrespective of posttranslational processing. We conclude that ICP22 encodes two sets of functions, one in the amino terminus unique to ICP22 and one shared by ICP22 and US1.5. These functions are required for viral replication in experimental animals. US1.5 protein must be posttranslationally modified by the UL13 protein kinase to enable expression of a subset of late genes exemplified by UL38 and US11. Posttranslational processing is determined by two sets of sequences, at the amino terminus and at the carboxyl terminus of US1.5, respectively, a finding consistent with the hypothesis that both domains interact with protein partners for specific functions.  相似文献   

3.
The ribonucleotide reductase (ribonucleoside-diphosphate reductase; EC 1.17.4.1) induced by herpes simplex virus type 2 infection of serum-starved BHK-21 cells was purified to provide a preparation practically free of both eucaryotic ribonucleotide reductase and contaminating enzymes that could significantly deplete the substrates. Certain key properties of the herpes simplex virus type 2 ribonucleotide reductase were examined to define the extent to which it resembled the herpes simplex virus type 1 ribonucleotide reductase. The herpes simplex virus type 2 ribonucleotide reductase was inhibited by ATP and MgCl2 but only weakly inhibited by the ATP X Mg complex. Deoxynucleoside triphosphates were at best only weak inhibitors of this enzyme. ADP was a competitive inhibitor (K'i, 11 microM) of CDP reduction (K'm, 0.5 microM), and CDP was a competitive inhibitor (K'i, 0.4 microM) of ADP reduction (K'm, 8 microM). These key properties closely resemble those observed for similarly purified herpes simplex virus type 1 ribonucleotide reductase and serve to distinguish these virally induced enzymes from other ribonucleotide reductases.  相似文献   

4.
Evidence is presented that the herpes simplex virus type 2 glycoprotein previously designated gF is antigenically related to herpes simplex virus type 1 gC (gC-1). An antiserum prepared against type 1 virion envelope proteins immunoprecipitated gF of type 2 (gF-2), and competition experiments revealed that the anti-gC-1 component of the antiserum was responsible for the anti-gF-2 cross-reactivity. An antiserum prepared against fully denatured purified gF-2, however, and three anti-gF-2 monoclonal antibodies failed to precipitate any type 1 antigen, indicating that the extent of cross-reactivity between gC-1 and gF-2 may be limited. Several aspects of gF-2 synthesis and processing were investigated. Use of the enzymes endo-beta-N-acetylglucosaminidase H and alpha-D-N-acetylgalactosaminyl oligosaccharidase revealed that the fully processed form of gF-2 (about 75,000 [75K] apparent molecular weight) had both complex-type N-linked and O-linked oligosaccharides, whereas newly synthesized forms (67K and 69K) had only high-mannose N-linked oligosaccharides. These last two forms were both reduced in size to 54K by treatment with endo-beta-N-acetylglucosaminidase H and therefore appear to differ only in the number of N-linked chains. Neutralization tests and radioiodination experiments revealed that gF-2 is exposed on the surfaces of virions and that the 75K form of gF-2 is exposed on cell surfaces. The similarities and differences of gF-2 and gC-1 are discussed in light of recent mapping results which suggest collinearity of their respective genes.  相似文献   

5.
The DNA region encoding the complete herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) was inserted into a baculovirus transfer vector, and recombinant viruses expressing gK were isolated. Four gK-related recombinant baculovirus-expressed peptides of 29, 35, 38, and 40 kDa were detected with polyclonal antibody to gK. The 35-, 38-, and 40-kDa species were susceptible to tunicamycin treatment, suggesting that they were glycosylated. The 38- and 40-kDa species corresponded to partially glycosylated precursor gK (pgK) and mature gK, respectively. The 29-kDa peptide probably represented a cleaved, unglycosylated peptide. The 35-kDa peptide probably represented a cleaved, glycosylated peptide that may be a precursor to pgK. Indirect immunofluorescence with polyclonal antibody to gK peptides indicated that the recombinant baculovirus-expressed gK was abundant on the surface of the insect cells in which it was expressed. Mice vaccinated with the baculovirus-expressed gK produced very low levels (< 1:10) of HSV-1 neutralizing antibody. Nonetheless, these mice were partially protected from lethal challenge with HSV-1 (75% survival). This protection was significant (P = 0.02). Despite some protection against death, gK-vaccinated mice showed no protection against the establishment of latency. Surprisingly, gK-vaccinated mice that were challenged ocularly with a stromal disease-producing strain of HSV-1 had significantly higher levels of ocular disease (herpes stromal keratitis) than did mock-vaccinated mice. In summary, this is the first report to show that vaccination with HSV-1 gK can provide protection against lethal HSV-1 challenge and that vaccination with an HSV-1 glycoprotein can significantly increase the severity of HSV-1-induced ocular disease.  相似文献   

6.
The nuc- lesion affecting alkaline exonuclease activity in the herpes simplex virus type 2 (HSV-2) mutant ts1348 had previously been mapped to the EcoRI-D restriction enzyme fragment of HSV-1. Eight clones with deletions representing most of HSV-1 EcoRI fragment D were selected with lambda gtWES hybrids. These clones were tested for their ability to rescue the alkaline exonuclease activity of HSV-2 nuc- ts1348 virus. The sequences colinear with the HSV-2 nuc- lesion were found to map between 0.169 and 0.174 map units on the HSV-1 Patton genome, representing an 0.8-kilobase-pair region that is 12.9 to 13.7 kilobase pairs from the left end of HSV-1 EcoRI fragment D.  相似文献   

7.
The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC.  相似文献   

8.
9.
10.
Affinity chromatography on single-stranded and double-stranded DNA-cellulose indicates that 12 proteins previously identified from herpes simplex virus type 2-infected cells, ranging in molecular weight from 28 X 10(3) to 186 X 10(3), bind to DNA-cellulose. The DNA-binding proteins found in infected cells differed in relative binding strengths for denatured DNA-cellulose. The virus specificity of these DNA-binding proteins was further studied by comparison with DNA-binding proteins isolated from mock-infected cells, and by immunoprecipitation of infected-cell DNA-binding proteins with antisera specific for viral antigens. The promise this technique holds for the purification and study of polypeptides involved in virus DNA replication, recombination, or repair is discussed.  相似文献   

11.
Characterization of a major late herpes simplex virus type 1 mRNA   总被引:5,自引:18,他引:5       下载免费PDF全文
A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.  相似文献   

12.
13.
The alkaline exonuclease (AE) encoded by the herpes simplex virus type 1 (HSV-1) UL12 open reading frame was inducibly expressed in Escherichia coli and purified without the use of chromatographic separation. This recombinant AE was found to exhibit the same biochemical properties as the virus-encoded protein and was used to confirm the existence of a weak endonucleolytic activity in the enzyme. Antisera raised against the recombinant protein recognized several forms of the AE in HSV-1-infected cells. This expression and purification strategy will provide an economical and easily accessible alternative source of HSV-1 AE for future in vitro studies.  相似文献   

14.
Mechanisms of herpes simplex virus type 1 reactivation.   总被引:11,自引:8,他引:3       下载免费PDF全文
  相似文献   

15.
The herpes simplex virus (HSV) genome contains both cis- and trans-acting elements which are important in viral DNA replication. The cis-acting elements consist of three origins of replication: two copies of oriS and one copy of oriL. It has previously been shown that five cloned restriction fragments of HSV-1 DNA together can supply all of the trans-acting functions required for the replication of plasmids containing oriS or oriL when cotransfected into Vero cells (M. D. Challberg, Proc. Natl. Acad. Sci. USA, 83:9094-9098, 1986). These observations provide the basis for a complementation assay with which to locate all of the HSV sequences which encode trans-acting functions necessary for origin-dependent DNA replication. Using this assay in combination with the data from large-scale sequence analysis of the HSV-1 genome, we have now identified seven HSV genes which are necessary for transient replication of plasmids containing either oriS or oriL. As shown previously, two of these genes encode the viral DNA polymerase and single-stranded DNA-binding protein, which are known from conventional genetic analysis to be essential for viral DNA replication in infected cells. The functions of the products of the remaining five genes are unknown. We propose that the seven genes essential for plasmid replication comprise a set of genes whose products are directly involved in viral DNA synthesis.  相似文献   

16.
Properties of herpes simplex virus type 1 and type 2 DNA polymerase   总被引:25,自引:0,他引:25  
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) DNA polymerases were highly purified from infected HeLa BU cells by DEAE cellulose, phosphocellulose and DNA cellulose column chromatography. DNA exonuclease activity but not endonuclease activity was found associated with both types of DNA polymerase. Both DNA polymerase activities could be activated by salt in a similar fashion with the optimal activity in the range of ionic strength between 0.22 and 0.29 alpha. At an ionic strength of 0.14, spermidine and putrescine in the concentration range (0--5 mM) studied could mimic the action of KCI in stimulating DNA polymerase activity. Spermine, in the same concentration range, had a biphasic effect. At an ionic strength of 0.29 all three polyamines were inhibitory. HSV-1 and HSV-2 DNA polymerase are similar in their column chromatographic behavior, sedimentation rate in sucrose gradient centrifugation, and activation energy, but they differ in their heat stability at 45 degrees C with the HSV-2 enzyme more stable than the HSV-1 enzyme. Kinetic behavior of both enzymes is similar, with Km values for deoxyribonucleoside triphosphates in the range of 5 . 10(-7) to 1.8 . 10(-8) M. IdUTP and dUTP served as apparent competitive inhibitors with respect to dTTP, and AraATP acted as an apparent competitive inhibitor with respect to dATP. AraATP could not replace dATP in the DNA polymerization reaction; in contrast, IdUTP could replace TTP. Phosphonoformic acid behaved as an uncompetitive inhibitor with respect to DNA. The ID(50) value estimated was foind to be dependent on the purity of the DNA polymerase used and the ionic strength of the assay condition. Each DNA-polymerase associated DNA exonuclease had the same stability at 45 degrees C as its DNA polymerase. The associated DNAase activity was inhibited by phosphonoformic acid and high ionic strength of the assay condition.  相似文献   

17.
We previously showed that the right third of HindIII fragment L (0.59 to 0.65) of herpes simplex virus type 1 (HSV-1) encodes a family of mRNAs some members of which appear to be related by splicing. In the experiments described in this communication, we determined the nucleotide sequence of the DNA encoding this mRNA family and precisely located the mRNAs associated with this DNA sequence. The major mRNA species is unspliced and encoded by a 2.520-nucleotide region. Just upstream of the 5' end are TATA and CAT box sequences characteristic of HSV-1 promoters. The 3' end maps near a region containing a nominal polyadenylation signal. Three minor species (2,400, 2,200, and 1,900 bases, respectively) appear to share a very short leader sequence with the 5' end of the major mRNA and are then encoded by uninterrupted DNA sequences beginning about 100, 400, and 625 bases downstream of the 5' end of the major unspliced mRNA. These positions map at or very near positions which agree reasonably well with consensus splice acceptor sequences. The fourth mRNA is encoded by a contiguous 730-nucleotide sequence at the 3' end of the major unspliced mRNA and has its 5' end just downstream of recognizable TATA and CAT box sequences. We suggest that this mRNA is controlled by its own promoter. The nucleotide sequence data, in combination with the mRNA localization, demonstrate four potential polypeptides encoded by the region. The largest is 1,569 bases long and defines a 523-amino acid protein with sequence features characteristic of a glycoprotein. This was confirmed to be HSV-1 glycoprotein C by immune precipitation of the in vitro translation product of the major unspliced mRNA, performed with a polyspecific antibody to HSV-1 envelope glycoproteins (anti-env-1 serum), and by comparison of tryptic peptides of this translation product with those of authentic HSV-1 glycoprotein C. Polypeptides encoded by some of the minor species also were tentatively identified.  相似文献   

18.
Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65KDBP) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65KDBP. Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65KDBP, was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65KDBP. The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65KDBP, thus confirming the gene assignment.  相似文献   

19.
The aim of this study was to elucidate protein-protein interactions between tegument proteins of herpes simplex virus type 1 (HSV-1). To do so, we have cloned and expressed in the LexA yeast (Saccharomyces cerevisiae) two-hybrid system, 13 of the 21 currently known tegument proteins of HSV-1. These included the tegument proteins essential for replication in cell lines, UL17, UL36, UL37, UL48, and UL49, and the nonessential tegument proteins US11, UL11, UL14, UL16, UL21, UL41, UL46, and UL47. A total of 104 combinations were screened in the yeast two-hybrid assay, with 9 interactions identified. These included: UL11-UL16, UL36-UL37, UL36-UL48, UL46-UL48, UL47-UL48, and UL48-UL49. The remaining interactions consisted of self-associations that were observed for US11, UL37, and UL49. The interactions UL36-UL37, UL36-UL48, UL37-UL37, UL46-UL48, and UL47-UL48 have not been previously reported for HSV-1. The interaction of UL46-UL48 was verified using an in vitro pull-down assay. The interactions of UL36-UL37 and UL37-UL37 were verified with a coimmunoprecipitation assay. Knowledge of HSV-1 tegument protein-protein interactions will provide insights into the pathways of tegument assembly, and the identified interactions are potential targets for new antiviral drugs.  相似文献   

20.
We have previously shown that aminoglycosides such as neomycin and the polyamino acids polylysine and polyarginine selectively inhibit the binding of herpes simplex virus type 1 (HSV-1) to the cellular receptor, whereas HSV-2 infection is unaffected. In the present study we took advantage of this difference between HSV-1 and HSV-2 by using HSV(-1)-HSV(-2) intertypic recombinants to locate a region on the HSV-1 genome encoding proteins affecting the binding of the virion to the cellular receptor. The results were consistent with those obtained by marker rescue experiments. The identified region, which mapped between coordinates 0.580 and 0.687, contains two partial and eight complete genes, including the glycoprotein C (gC) gene and two others with potential transmembrane sequences. Various gC monoclonal antibody-resistant mutants of HSV-1 as well as a mutant completely lacking gC were found to be fully sensitive to neomycin, suggesting that gC is not the site of drug sensitivity and is not essential for adsorption of virus to the cellular receptor. However, the rate of adsorption was reduced in the absence of gC, indicating a facilitating function of the glycoprotein. The universal nature of this HSV-1 receptor binding was revealed by the similarity in drug sensitivity of infectivity in four different cell lines from various tissues and species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号