首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
125I-human growth hormone (125I-hGH) binds specifically to receptors on cultures human lymphocytes (IM-9). When this process is studied by use of quantitative EM radioautography, under conditions of incubation at 15 degrees C for 5 min, the ligand is localized to the plasma membrane of the cell. At 30 degrees and 37 degrees C, however, 125I-hGH is progressively internalized by the cell as a function of time. The internalized ligand is found predominantly in the Golgi region of the cells, with a five-fold preferential localization to membrane-bounded structures with the morphological and cytochemical characteristics of lysosomes. Up to 59% of these lysosome-like structures are positive for the acid phosphatase reaction under the conditions of incubation at 37 degrees C for 120 min. When the cell associated radioactivity after 15- 120 min of incubation at 37 degrees C is extracted in 1 M acetic acid and filtered on a Sephadex G-100 column, 58-73% of the material elutes as intact hGH. When cells are incubated with 125I-hGH at 37 degrees C for 15-120 min, separated from the incubation medium, and washed and diluted 100-fold, the percent 125I-hGH dissociable decreases as a function of increasing time of incubation. When cells are incubated with 125I-hGH for 15 min at 37 degrees C and the radioactivity that dissociates from the cells during 15-90 min is studied, the labeled material appearing in the incubation medium is progressively degraded as a function of time of incubation. When the dissociation process is studied radioautographically, grains are found both in plasma membrane and intracelluar compartments after 30 min of association, but after 30 and 120 min of dissociation a higher proportion of grains are in the intracellular compartment. After 120 min of association, there is less dissociation from either compartment and a preferential increase of grains in the intracellular compartment. These data suggest that receptor-linked internalization of a polypeptide hormone provides a mechanism that couples degradation of the ligand with loss of the cell surface receptor.  相似文献   

2.
3.
The receptors for the polypeptide hormones, insulin and growth hormone, are located on the cell surface. Since the cytoplasmic microtubules and microfilaments are involved in the mobility and distribution of surface receptors for immunoglobulins and lectins, we investigated the role of these structures in the binding of insulin and human growth hormone to their receptors on cultured human lymphocytes (IM-9). Cells preincubated with microfilament modifiers, cytochalasin A, B, and D (10 mug/ml), had decreased binding of insulin (30%) and human growth hormone (60%) under steady state conditions, which was not reversed by removing the cytochalasins from the medium and was due entirely to a reduced number of receptor sites on the cell surfact. The lost receptors were not detected in the medium, suggesting a redistribution within the cell. The cytochalasins failed to alter the affinity of the hormones for their receptors or the negative cooperativity of the insulin receptor. The anti-microtubule agents (vincristine, vinblastine, colchicine) had no effect on the binding of insulin and growth hormone to their receptors. Deuterium oxide, a stabilizer of microtubules and other proteins, decreased the affinity (40%) of insulin for its receptors under steady state conditions and accelerated moderately the spontaneous dissociation of 125I-insulin from its receptors. Since cytochalasin decreases the number of available insulin and human growth hormone receptor sites, cytochalasin-sensitive microfilamentous structures appear to modulate the exposure of cell surface hormone receptors, while microtubules do not seem to be involved.  相似文献   

4.
We have recently established that the human growth hormone-variant (hGH-V) gene is functional in vivo by documenting its expression in the placenta. We have subsequently generated transformed murine cell lines stably expressing the genes for normal pituitary growth hormone (hGH-N), hGH-V, and each of two chimeric genes generated by exon 3 exchanges, hGH-NV3 and hGH-VN3. In the present study, we utilize these cell lines as sources of hormone to characterize and compare the receptor binding profiles of hGH-N with hGH-V. hGH-V was found to displace 125I-ovine prolactin bound to rat liver microsomes (lactogen binding) and to displace 125I-hGH bound to rabbit liver microsomes (somatogen binding). Therefore, hGH-V would be predicted to display both somatogenic and lactogenic bioactivity, a dual specificity previously thought to be unique to hGH-N. The concentrations of hormone necessary to displace 50% (IC50) of the 125I-hGH from somatogen receptors and 125I-ovine prolactin from lactogen receptors was expressed as a ratio, IC50 somatogen: IC50 lactogen, for each hormone tested. A 7.4-fold difference in this ratio was observed for hGH-N compared to hGH-V, suggesting significantly greater selectivity by hGH-V in binding to the somatogen receptor. The intermediate binding ratios of the hGH-NV3 and hGH-VN3 chimeric proteins confirmed the distinct receptor binding profiles of the two parent hormones and served to identify three amino acids of potential importance in defining their respective receptor binding specificities.  相似文献   

5.
Incubation of hepatocytes from pregnant rats with dithiothreitol decreased specific 125I-prolactin (125I-prl) binding to such cells by about 20% relative to control. This was not due to a non-specific effect of dithiothreitol on the cell membrane, since reduction also altered the binding of prl to solubilized partially purified receptor. Exposure of hepatocytes to N-ethylmaleimide (6 mM) for periods as brief as 1 min decreased the subsequent specific binding of 125I-prl by more than 50%. N-Ethylmaleimide was less effective as an inhibitor of binding when applied after hepatocytes had been exposed to 125I-prl, binding being decreased by about 15%. Scatchard analysis demonstrated that the effect of N-ethylmaleimide resulted from loss of receptor-binding capacity without any substantial effect on the affinity of the prl receptor for hormone. Dithiothreitol diminished the affinity of lactogenic sites for prolactin without altering cellular binding capacity. These observations suggest that thiol and disulphide groups are present in the prl receptor and that these functional moieties regulate the formation and properties of prl receptor complexes. The species to which 125I-prl had bound were identified by affinity labelling. 125I-prl was covalently coupled into saturable complexes of Mr 65000 and 50000. 125I-human growth hormone (125I-hGH) was covalently incorporated into complexes of Mr 300 000, 220 000, 130 000, 65 000 and 50 000. Bovine growth hormone (bGH), but not prl, competed for 125I-hGH uptake into the 300 000-, 220 000- and 130 000-Mr complexes, indicating that these species were somatogenic. Prl, but not bGH, inhibited 125I-hGH uptake into 65 000- and 50 000-Mr complexes. This demonstrated that 125I-hGH in the presence of bGH could affinity-label lactogenic receptors. 125I-prl aggregates in Triton X-100, whereas 125I-hGH does not. Therefore lactogenic complexes to which 125I-hGH was bound in the presence of excess bGH were solubilized in Triton X-100 and characterized sequentially by gel filtration and affinity labelling. Prl receptors were eluted from columns of Sepharose 6B as a species of Mr380 000. Fractionation of the 380 000-Mr species on sodium dodecyl sulphate polyacrylamide gels resulted in the isolation of complexes of Mr 65 000 and 50 000. Thus non-covalent forces stabilize aggregates of the monomeric prolactin receptor.  相似文献   

6.
Little is known of the effects of the solvent on hormone-receptor interactions. In the present study the effect of the polar solvent dimethyl sulfoxide on the binding of insulin to its surface receptors on cultured human lymphocytes of the IM-9 line was investigated. At concentrations exceeding 0.1% (v/v), dimethyl sulfoxide produced a dose-related inhibition of 125-I-labeled insulin binding. Insulin binding was totally abolished in 20% dimethyl sulfoxide. This inhibition was immediately present and was totally reversible. Analysis of the data of binding at steady state indicated that the decrease in binding of 125I-labeled insulin was due to a reduced affinity of the insulin receptor without noticeable change in the concentration of receptor sites. Kinetic studies showed that the decreased affinity could largely be accounted for by a decreased association rate constant; effects on dissociation and negative cooperativity of the insulin receptor was affected to a much lesser extent.  相似文献   

7.
Antisera against a partially purified growth hormone receptor derived from rabbit liver were generated in guinea pigs. The antisera specifically inhibited the binding of 125I-ovine growth hormone (oGH) to liver membranes but had no effect on the binding of 125I-ovine prolactin to rabbit mammary gland receptors. These antisera did not bind or destroy 125I-oGH. Moreover, the binding of labeled growth hormone to membrane particles derived from liver of several species was also inhibited by the antisera, thus suggesting that immunological determinants of the growth hormone receptor of several species are similar. gamma-Globulin fractions derived from the antisera were responsible for the inhibition. In addition 125I-gamma-globulin derived from one antiserum bound to membrane pellets with a corresponding decline in 125I-oGH binding. Kinetic analysis of inhibition of 125I-oGH binding suggested a hyperbolic competitive inhibition, a point of view which is favored by the demonstration of a hormone receptor . antibody complex. The availability of the antireceptor sera confirmed previous data that differential affinity chromatography separated growth hormone and prolactin receptors in solubilized rabbit liver membrane preparations. The antireceptor sera will be useful probes in further characterization of the growth hormone receptor.  相似文献   

8.
After energy depletion by uncouplers of oxidative phosphorylation or inhibitors of electron transport, primary cultures of carcinogen-induced rat mammary tumors have a 2- to 20-fold increase in the number of cell surface prolactin receptors. When energy-depleted cells were treated with 0.15 M NaCl plus 50 mM glycine pH 3, for 1 min at 4 degrees C, 75% of the specific surface-bound 125I-labeled ovine prolactin was removed, but prolactin and its receptor were not destroyed. Using this technique, we found that receptor-bound prolactin can be internalized (becomes resistant to pH 3.0 treatment) and then degraded. The internalization of occupied receptors required energy, was completed 30-60 min before degradation, and was independent of protein synthesis. Hormone degradation (t1/2, 42 min) but not uptake was prevented by NH4Cl or lysosomotropic amines. In the presence of cycloheximide, receptors were lost (t1/2, 62 min) unless such loss was prevented by KCN. After unoccupied receptors were activated by energy depletion, surface receptors were lost when inhibitor was removed and glucose was added. Thus, both occupied and unoccupied prolactin receptors are constantly removed from the cell surface via an energy-dependent uptake mechanism. If the receptor levels are first increased by energy depletion (with or without bound ligand) or if protein synthesis is inhibited, there is a net loss of surface binding sites. Since the receptors reappeared with 15 h after cycloheximide removal, some of the receptors probably are recycled under normal steady state conditions.  相似文献   

9.
Specific receptors for prolactin (PRL) are known to be present on plasma membranes and intracellular membranes of mammary gland. We now report, however, the detection and characterization of a soluble lactogen-specific binding protein in high-speed (200,000 g) cytosolic preparations from pregnant- and non-pregnant-rabbit mammary gland. The binding protein was not detectable by poly(ethylene glycol) precipitation; instead, bound and free 125I-labelled human growth hormone (hGH; a potent lactogen) was separated using a mini-gel filtration technique. Specific binding of 125I-hGH reached an apparent equilibrium between 10 and 14 h at 21-23 degrees C. It was dependent on mammary-gland protein concentration and, partially, on Ca2+ or Mg2+ concentrations. Scatchard analysis revealed steep curvilinear plots, the high-affinity component having a KA of approximately 3 X 10(10) M-1. Gel filtration on calibrated Ultrogel AcA34 columns of 125I-hGH-cytosol complexes or of cytosol alone, followed by measurement of 125I-hGH binding in each eluted fraction, indicated that the binding protein had an Mr of 33,000-43,000. A specific binding protein of the same size was observed when 125I-ovine or -human PRL, but not 125I-bovine GH, was used as ligand. The apparent lactogenic specificity was confirmed by a lack of cross-reactivity of the binding protein with an anti-[GH receptor (rabbit liver)] monoclonal antibody. Polyacrylamide-gel electrophoresis of 125I-hGH covalently cross-linked to cytosol with disuccinimidyl suberate revealed binding proteins of Mr 35,000 (non-reduced) and 37,000 (reduced), results comparable with those obtained by gel filtration and indicating an absence of inter-subunit disulphide bonds. These studies have shown the presence of an apparently naturally soluble lactogen-binding protein in the cytosolic fraction of rabbit mammary gland. The relationship between this binding protein and the membrane PRL receptor is not yet known.  相似文献   

10.
The neuropeptide substance P (SP) stimulates human T-lymphocyte function in vitro. Human blood T-lymphocytes and cultured human IM-9 B-lymphoblasts express 7,000-10,000 and 25,000-30,000 substance P receptors per cell, respectively. The specific binding of 125I-SP is retained in IM-9 lymphoblast membranes solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) at a detergent-to-protein ratio of 1.0. In addition, specific and reversible SP binding to soluble IM-9 cell membrane proteins is demonstrated by gel filtration. The saturation of binding of 125I-SP to both intact and solubilized IM-9 cell membranes attained a steady state after 40-50 min at 4 degrees C. Scatchard analysis of the concentration dependence of 125I-SP binding to IM-9 cell membranes revealed a KD of 0.87 +/- 0.8 nM (mean +/- S.D., n = 4), which is similar to that observed in intact cells, and a density of receptors of 21 +/- 3 fmol/mg of membrane protein (mean +/- S.D.). Binding of 125I-SP to solubilized membranes demonstrated a KD of 0.75 +/- 0.33 nM (mean +/- S.D., n = 3) and a density of receptors of 3.7 +/- 1.5 fmol/mg of membrane protein (mean +/- S.D., n = 3). Affinity cross-linking of 125I-SP by disuccinimidyl suberate to intact IM-9 cells and membranes revealed specifically labeled proteins of Mr 58,000 and 33,000 in cells, and 58,000, 33,000, and 16,000 in membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reducing and nonreducing conditions. Competitive effects of substituent peptides of SP on cross-linking and 125I-SP binding to membranes demonstrated that the SP receptor recognized the carboxyl-terminal domain of the peptide. Membranes from cells preincubated in vitro for 12 h at 37 degrees C with 10(-8) M SP demonstrated a decrease in SP receptor density to 13 +/- 2 fmol/mg (mean +/- S.D., n = 2), and a parallel diminution in the specific labeling of membrane proteins of Mr 58,000 and 33,000. These observations suggest that solubilization in CHAPS preserves the binding characteristics of the IM-9 lymphoblast receptor for SP, and that affinity cross-linking techniques identify by sodium dodecyl sulfate-polyacrylamide gel electrophoresis membrane proteins that are specifically labeled by SP.  相似文献   

11.
Little is known of the effects of the solvent on hormone-receptor interactions. In the present study the effect of the polar solvent dimethyl sulfoxide on the binding of insulin to its surface receptors on cultured human lymphocytes of the IM-9 line was investigated. At concentrations exceeding 0.1% (v/v), dimethyl sulfoxide produced a dose-related inhibition of 125I-labeled insulin binding. Insulin binding was totally abolished in 20% dimethyl sulfoxide. This inhibition was immediately present and was totally reversible. Analysis of the data of binding at steady state indicated that the decrease in binding of 125I-labeled insulin was due to a reduced affinity of the insulin receptor without noticeable change in the concentration of receptor sites. Kinetic studies showed that the decreased affinity could largely be accounted for by a decreased association rate constant; effects on dissociation and negative cooperativity of the insulin receptor were affected to a much lesser extent.  相似文献   

12.
The 20K variant of native (22K) hGH is a full agonist for the growth promoting and lactogenic properties of the hormone in vivo but has been reported to have weak or absent insulin-like properties. To explore if these differences may be explained at the receptor level, we compared the ability of 22K and 20K hGH to inhibit the binding of 125I-22K hGH to receptors in isolated rat adipocytes, a target for the insulin-like effects of the hormone and in IM-9 cultured human lymphocytes, more specific for growth effects. Our data show that while 20K hGH is a potent agonist of native 22K hGH in the IM-9 lymphocyte assay, its potency in the rat adipocyte binding assay is only 3%, even when both cells are incubated together in identical conditions. Thus, the receptors for hGH appear to be different on various target cells, explaining why the 20K variant has different relative biological potencies at different sites of action.  相似文献   

13.
The binding of 125I-labeled human growth hormone (hGH) to liver membranes from several different species was studied to determine the lactogenic or somatotropic hormone nature of the receptors. Liver membranes from several species of the class of Mammalia bound significant quantities of 125I-hGH. Goat, sheep, rat, mouse, and rabbit liver membranes exhibited the highest binding with cow, pig, human, and hamster liver membranes exhibiting severalfold less binding. The binding of the dog and cat liver membranes exhibited relatively high nonspecific binding. Fish and chicken liver membranes did not bind appreciable quantities of 125I-hGH. In all species except for dog and cat in which 125I-hGH bound to the membranes, hGH was the most effective competitor for binding. The mean ID50 for hGH and all membranes was 2.4 X 10(-9) M. Human liver membranes exhibited the smallest ID50, 4.9 X 10(-10) M. In sheep liver membranes, bovine growth hormone (bGH) was equipotent to hGH in competing for 125I-hGH binding. bGH also demonstrated significant competition for 125I-hGH binding in pig and cow membranes. Ovine prolactin (oPrl) exhibited significant competition for 125I-hGH only in rodent membranes. The ID50 for oPrl was 3- to 10-fold greater than for hGH in the rat, hamster, and mouse liver membranes. The ID50 for oPrl in the sheep liver membranes was 13-fold greater than that of hGH. We conclude the following: (1) There appears to be a species specificity of hGH binding that may be phylogenetically significant and may result from variations in the structure of the hormone or the receptor. (2) The competitive binding properties of hGH are fairly consistent within phylogenetic orders. (3) The simple designation of lactogenic or somatotropic for hormones and receptors is insufficient to characterize the binding properties of this group of hormones.  相似文献   

14.
The specificity of hormone-receptor interactions has been examined with the aid of monoclonal antibodies (MABs) (EB1, EB2, QA68 and NA71) defining four non-overlapping antigenic determinants on human growth hormone (hGH). The results indicate that growth-hormone receptors in liver obtained from different sources differ with regard to their affinities and relative numbers; they may also differ with respect to the region of the growth-hormone molecule to which they bind. Antibody NA71 effectively inhibited hormone binding to all receptor preparations tested, although with various degrees of potency. Monoclonal antibody EB1 demonstrated a graded inhibition with respect to its ability to block 125I-hGH binding to receptors from various sources, the maximum inhibition being seen in receptor preparations from mouse and ovine liver and the minimum in rat liver. MABs EB2 and QA68 also showed various abilities to inhibit hormone-receptor interaction, depending on the origin of the receptor preparation. Furthermore, the receptor-binding characteristics of hormone-antibody complexes were dependent on whether the binding-site preparation was derived from pregnant, lactating or 'normal' animals. A particularly striking difference between the ability of hormone-MAB complexes to bind to receptors from different sources was seen for microsomes (microsomal fractions) derived from livers of animals of the 'Little' mouse strain. These animals become progressively obese, and it was shown that MABs were considerably more effective in inhibiting 125I-labelled hGH binding to microsomes from phenotypically obese mice than to those derived from their non-obese littermates. The results can be explained by the presence of multiple receptor types for GH, the relative proportions of which vary according to the physiological state of the animal, and possibly between species.  相似文献   

15.
Immature pig Sertoli cells, cultured in a chemically defined medium, are able to maintain many of their functional characteristics for at least two weeks. This model was used to investigate the binding, internalization and degradation of 125I-labelled human follitropin (hFSH) and the effects of pig FSH (pFSH) on its own receptors. The binding of 125I-labelled hFSH was dependent on time, temperature and concentration. At 4 degrees C, the apparent steady state was reached in 8-12 h and remained constant for at least 24 h, whereas at 33 degrees C the apparent equilibrium was reached in 4-6 h. Thereafter the total binding declined and by 24 h it was less than 50% of the maximum binding. At 33 degrees C the binding for the hormone to its surface receptor was followed by internalization of the hormone (half-life approximately equal to 1 h) and its degradation (half-life approximately equal to 3 h). The receptor-mediated internalization of hFSH was blocked by phenylarsine oxide. In the presence of the ionophore monensin (20 microM) the rates of binding and internalization were not modified but the degradation rate was much lower (half-life approximately equal to 18 h). Thus, in the presence of monensin, maximum binding increased twofold to threefold, and remained constant for 24 h. This increase was mainly due to an increase of the internalized hormone. When Sertoli cells were exposed to pFSH there was a loss of its own receptor, which was both dose-dependent (ED50 = 250 ng/ml) and time-dependent (t 1/2 = 14 h). Cycloheximide did not modify the FSH-induced down-regulation, whereas monensin enhanced the down-regulation process. These results show that FSH, like other ligands, is internalized and degraded by its target cells and indicate that the hormone-mediated down-regulation is related to the internalization process. However, the discrepancy between the rate of internalization and of hormone-induced down-regulation, suggests that some of the internalized receptors are recycled.  相似文献   

16.
The effect of the polyamine, spermine, on the interaction of human 125I-labeled FSH with membrane-bound receptors derived from bovine calf testes has been examined. Concentrations of spermine less than 0.01 M resulted in a slight but insignificant (P greater than 0.10) enhancement of FSH concentrations of 0.01 M and above caused a progressive reduction of FSH binding. Membrane receptors incubated in the presence of spermine at concentrations inhibitory to human 125I-FSH binding (0.01-0.04 M) resulted in an 8-50% decrease in the apparent FSH receptor concentration and a 10-65% decrease in the affinity constant as determined by computerized analysis of the isothermic ligand-binding data. Within the temperature range 4-20 degrees C, simultaneous addition of spermine (0.025 M) increased the reversibility of human 125I-FSH binding approx. 10% (P less than 0.005). Delayed addition of spermine (0.01-0.04 M) resulted in a dose-related dissociation of human 125I-FSH already bound to its receptor (P less than 0.05). However, preincubation of membrane receptors with spermine (0.002-0.04 M) at 4 degrees C or 34 degrees C followed by washing and addition of human 125I-FSH, resulted in an increase in hormone binding (P less than 0.05) over that of controls. If membrane receptor was incubated at 34 degrees C with spermine in the absence of radioligand, the usual loss of hormone binding was reduced (P less than 0.05), while membrane receptor incubated with spermine at 4 degrees C exhibited hormone binding greater (P less than 0.05) than that observed before treatment. Thus, the mechanism of inhibition of human 125I-FSH binding to membrane receptors appears to be correlated with an increase in reversibility of the membrane receptor-human 125I-FSH complex and is expressed as a decrease in the calculated receptor concentration and affinity constant of that interaction. Second, spermine appears to stabilize the membrane receptor in the absence of ligand, presumably through a membrane effect. These data suggest that spermine, and possibly other polyamines, which are endogenous to eukaryotic cells and undergo increases in concentration following stimulation by trophic hormone may play a role in the modulation of the ligand-membrane receptor interaction, in part, through direct effects on the membrane and/or the receptor.  相似文献   

17.
Human growth hormone was labelled with 125 Iodine by the stoichiometric modification of the chloramine-T method to a specific activity of 50-80 microCi/microgram, and the iodinated mixture was purified by reverse-phase high performance liquid chromatography using a C18 column (SynChropak RP-P) and a linear gradient. Compared with the usual Sephadex G-100 chromatography, HPLC gave a much better separation, with a higher yield and a considerably reduced analysis time (30 min vs 5 h). The [125I]-labelled preparation had normal binding to IM-9 lymphocyte receptors. The maximum bindability of the HPLC-purified preparation approximated 90%, which is the best value so far reported for human growth hormone. It is concluded that HPLC is a fast, convenient and reproducible method for obtaining an improved [125I]-labelled human growth hormone for receptor studies.  相似文献   

18.
The regulation of receptors for gonadotropin-releasing hormone (GnRH) by the homologous decapeptide ligand was analyzed in cultured rat anterior pituitary cells. Assay of GnRH receptors in both intact and disrupted cells showed that GnRH binding to gonadotrophs was rapidly followed by dose-dependent loss of sites that was maximal within 1 h. This early loss of GnRH receptors was not dependent on protein synthesis, and was attributable to ligand-induced processing of the peptide binding sites. No loss of GnRH sites was observed after receptor occupancy by a GnRH antagonist, or after target cell activation by exposure to a depolarizing concentration of KCl to stimulate luteinizing hormone release. After their initial down-regulation, GnRH receptors returned to normal and subsequently increased in concentration after 6 h of incubation. The delayed phase of receptor up-regulation was prevented by treatment with cycloheximide or actinomycin D and was calcium-dependent, being induced by 50 mM KCl and by low concentrations of the calcium ionophore, A23187. Conversely, calcium antagonists such as verapamil and MgCl2 impaired the agonist-induced increase of GnRH receptor sites. These findings have demonstrated that pituitary GnRH receptors undergo two distinct phases of regulation after interaction with the homologous ligand. The initial phase of agonist-dependent receptor loss is followed by a postsecretory phase of receptor recruitment that is dependent on protein synthesis. The expression of GnRH receptors can be completely dissociated from gonadotropin secretion, indicating that fusion of luteinizing hormone secretory granules with the plasma membrane is not a major pathway for transport of GnRH receptors to the cell surface in cultured gonadotrophs. Such changes in cell surface GnRH receptors during activation by the peptide agonist are relevant to the alterations in gonadotroph sensitivity that occur in vivo during physiological regulation of the pituitary gland by GnRH.  相似文献   

19.
The binding of 125I-labelled human growth hormone to the 100000g microsomal membrane fraction prepared from the livers of normal female rats was dependent on time, temperature, pH, membrane concentration and concentration of 125I-labelled human growth hormone. At 22 degrees C binding reached a steady state after 16h, with the mean maximal specific binding being 20% of the tracer initially added. Dissociation of 125I-labelled human growth hormone from the membranes, after addition of excess of unlabelled hormone, was relatively slow with a half-time greater than 24h. Only minor degradation of the 125I-labelled human growth hormone was observed during incubation with membranes for 16 or 25h at 22 degrees C. Similarly, no significant change in the ability of membranes to bind human growth hormone was evident after preincubation of the membranes for 16 or 25h. Specificity studies showed that up to 90% of the 125I-labelled human growth hormone bound could be displaced by 1 mug of unlabelled hormone. Ovine prolactin also showed considerable competition for the binding site. Non-primate growth-hormone preparations (ovine, bovine, porcine and rat) and non-related hormones (insulin, thyrotropin, lutropin and follitropin) all showed negligible competition. Scatchard analysis of the binding data was consistent with two classes of binding site with binding affinities of 0.64 X 10(10) +/- 0.2 X 10(10)M-1 and 0.03 X 10(10) +/- 0.007 X 10(10)M-1 and corresponding binding capacities of 98.4 +/- 10 fmol/mg of protein and 314.6 +/- 46.3 fmol/mg of protein. These studies provide data which, in general, are consistent with the criteria required for hormone-receptor interaction. However, proof of the thesis that the human-growth-hormone-binding sites in female rat liver represent physiological receptors must await the demonstration of a correlation between hormone binding and a biological response.  相似文献   

20.
In this study, we report a procedure for producing antisera that block the binding of 125I-insulin to its receptor. After 2 injections with intact IM-9 cultured human lymphocytes, the antisera from 8 of 17 BalbC mice inhibited the binding of 125I-insulin to its receptor on IM-9 cells by 50% or greater. One antiserum at dilutions of 1:200 and 1:50 inhibited the binding of 125I-insulin by 50% and 80%, respectively. Four lines of evidence indicated that the inhibition of 125I-insulin binding by this antiserum was due to a specific immunoglobulin directed against the insulin receptor. First, removal of the immunoglobulin fraction of the antiserum resulted in a complete loss of its inhibitory activity. Second, the antiserum inhibited the binding of 125I-insulin to its receptor on both human cultured lymphocytes and human placenta particles. Third, the antisera bound solubilized insulin-receptor complexes. Finally, the antiserum did not inhibit the binding of 125I-human growth hormone to its receptor on IM-9 lymphocytes. These studies demonstrate therefore, a simple method for producing antibodies that block the binding of 125I-insulin to the human insulin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号