首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oblique muscle layer in the leech body wall is built upon the processes of a unique identified embryonic cell, the Comb- or C-cell. Each C-cell is composed of a spindle-shaped soma that projects approximately 70 parallel processes through the developing body wall at an angle oblique to the long axis. The morphogenesis of this cell and the navigation of its growth cones were examined by intracellular dye filling and antibody staining. At the earliest stages described each C-cell had about six processes, with those near the center of the cell oriented obliquely. As processes were added at the axial ends of the soma they often projected along previously developed longitudinal or circular muscle founder cells and then secondarily aligned themselves parallel to the older processes from the same C-cell. All growth cones initially extended to a particular location in the body wall, where they ceased growing until all 70 processes had been added (over the course of about 5 days). As adjacent segmental homologs met, their growth cones intermingled, eventually sorting out to align parallel. When one of these cells was ablated early--but not later--in development, the remaining adjacent segmental homologs expanded into the vacant territory, consistent with a hypothesis of mutual avoidance between segmental homologs. Most processes that expanded into the experimentally induced vacancy remained correctly oriented and parallel; the few exceptions projected instead along the mirror-image trajectory. Thus, expression of specific avoidance between adjacent C-cell processes is developmentally regulated and functions as a guidance mechanism in vivo, in that it serves to restrict possible trajectories. After aligning its growth cones, each cell stopped adding processes and the processes rapidly extended in concert along relatively precise trajectories. Processes of contralateral homologs cross to form the orthogonal grid used as a scaffold by myocytes to form the oblique muscles. The advancing fronts of growth cones reached the dorsal midline at about the same time as body closure occurs (at about Embryonic Day 20) at which time the C-cells became granular, lost processes, and presumably died. This sequence of developmental events is consistent with temporal and spatial regulation of different morphogenetic strategies, including--but not limited to--specific avoidance, and further suggests testable hypotheses of mechanisms of growth cone navigation in the intact embryo.  相似文献   

2.
Cytoskeletal remodeling during growth cone-target interactions   总被引:12,自引:7,他引:5       下载免费PDF全文
《The Journal of cell biology》1993,121(6):1369-1383
Reorganization of the cytoskeleton of neuronal growth cones in response to environmental cues underlies the process of axonal guidance. Most previous studies addressing cytoskeletal changes during growth cone pathfinding have focused on the dynamics of a single cytoskeletal component. We report here an investigation of homophilic growth cone- target interactions between Aplysia bag cell neurons using digitally enhanced video microscopy, which addresses dynamic interactions between actin filaments and microtubules. After physical contact of a growth cone with a physiological target, mechanical coupling occurred after a delay; and then the growth cone exerted forces on and displaced the target object. Subsequent to coupling, F-actin accumulation was observed at the target contact zone, followed by preferential microtubule extension to the same site. After successful target interactions, growth cones typically moved off highly adhesive poly-L- lysine substrates into native target cell surfaces. These events were associated with modulation of both the direction and rate of neurite outgrowth: growth cone migration was typically reoriented to a trajectory along the target interaction axis and rates of advance increased by about one order of magnitude. Directed microtubule movements toward the contact site appeared to be F-actin dependent as target site-specific microtubule extension and bundling could be reversibly randomized by micromolar levels of cytochalasin B in a characteristic manner. Our results suggest that target contacts can induce focal F-actin assembly and reorganization which, in turn, guides target site-directed microtubule redistribution.  相似文献   

3.
During nervous system development, neurons form synaptic contacts with distant target cells. These connections are formed by the extension of axonal processes along predetermined pathways. Axon outgrowth is directed by growth cones located at the tips of these neuronal processes. Although the behavior of growth cones has been well-characterized in vitro, it is difficult to observe growth cones in vivo. We have observed motor neuron growth cones migrating in living Caenorhabditis elegans larvae using time-lapse confocal microscopy. Specifically, we observed the VD motor neurons extend axons from the ventral to dorsal nerve cord during the L2 stage. The growth cones of these neurons are round and migrate rapidly across the epidermis if they are unobstructed. When they contact axons of the lateral nerve fascicles, growth cones stall and spread out along the fascicle to form anvil-shaped structures. After pausing for a few minutes, they extend lamellipodia beyond the fascicle and resume migration toward the dorsal nerve cord. Growth cones stall again when they contact the body wall muscles. These muscles are tightly attached to the epidermis by narrowly spaced circumferential attachment structures. Stalled growth cones extend fingers dorsally between these hypodermal attachment structures. When a single finger has projected through the body wall muscle quadrant, the growth cone located on the ventral side of the muscle collapses and a new growth cone forms at the dorsal tip of the predominating finger. Thus, we observe that complete growth cone collapse occurs in vivo and not just in culture assays. In contrast to studies indicating that collapse occurs upon contact with repulsive substrata, collapse of the VD growth cones may result from an intrinsic signal that serves to maintain growth cone primacy and conserve cellular material.  相似文献   

4.
The activity of filopodia and lamellipodia determines the advance, motility, adhesion, and sensory capacity of neuronal growth cones. The shape and dynamics of these highly motile structures originate from the continuous reorganization of the actin cytoskeleton in response to extracellular signals. The small GTPases, Rac1, Rho, and CDC42, regulate the organization of actin filament structures in nonneuronal cells; yet, their role in growth cone motility and neurite outgrowth is poorly understood. We investigated in vitro the function of Rac1 in neurite outgrowth and differentiation by introducing purified recombinant mutants of Rac1 into primary chick embryo motor neurons via trituration. Endogenous Rac1 was expressed in growth cone bodies as well as in the tips and shafts of filopodia, where it often colocalized with actin filament structures. The introduction of constitutively active Rac1 resulted in an increase in rhodamine–phalloidin staining, presumably from an accumulation of actin filaments in growth cones, while dominant negative Rac1 caused a decrease in rhodamine–phalloidin staining. Nevertheless, both Rac1 mutants retarded growth cone advance, and hence attenuated neurite outgrowth and inhibited differentiation of neurites into axons and dendrites on laminin and fibronectin. In contrast, on poly-D -lysine, neither Rac1 mutant affected growth cone advance, neurite outgrowth, or neurite differentiation despite inducing similar changes in the amount of rhodamine–phalloidin staining in growth cones. Our data demonstrate that Rac1 regulates actin filament organization in neuronal growth cones and is pivotal for β1 integrin–mediated growth cone advance, but not for growth on poly-D lysine. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 524–540, 1998  相似文献   

5.
Directed outgrowth of neural processes must involve transmission of signals from the tips of filopodia to the central region of the growth cone. Here, we report on the distribution and dynamics of one possible element in this process, actin, in live growth cones which are reorienting in response to in situ guidance cues. In grasshopper embryonic limbs, pioneer growth cones respond to at least three types of guidance cues: a limb axis cue, intermediate target cells, and a circumferential band of epithelial cells. With time-lapse imaging of intracellularly injected rhodamine-phalloidin and rhodamine-actin, we monitored the distribution of actin during growth cone responses to these cues. In distal limb regions, accumulation of actin in filopodia and growth cone branches accompanies continued growth, while reduction of actin accompanies withdrawal. Where growth cones are reorienting to intermediate target cells, or along the circumferential epithelial band, actin selectively accumulates in the proximal regions of those filopodia that have contacted target cells or are extending along the band. Actin accumulations can be retrogradely transported along filopodia, and can extend into the central region of the growth cone. These results suggest that regulation and translocation of actin may be a significant element in growth cone steering.  相似文献   

6.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

7.
During axonogenesis, contacts made by the growth cone with its substratum are important in guiding the direction of neurone outgrowth. This study examines the contacts made by the growth cones of pioneer neurones in the embryonic grasshopper limb. Individual pioneer neurones at different stages of development were injected with horseradish peroxidase and the contacts made by the filopodia at the tip of their growth cones were examined by electron microscopy. Filopodia made few contacts with mesodermal cells, some contacts with ectodermal cells and very frequent contacts with basal lamina underlying the ectoderm. Components of the basal lamina may therefore play a role in guiding pioneer axon outgrowth.  相似文献   

8.
The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.  相似文献   

9.
Studies in vitro have revealed a great deal about growth cone behaviors, especially responses to guidance molecules, both positive and negative, and the signaling systems mediating these responses. Little, however, is known about these events as they take place in vivo. With new imaging methods, growth cone behaviors can be chronicled in the complex settings of intact or semi-intact systems. With the retinal projection through the optic chiasm as a model, we examined the hypothesis previously drawn from static material that growth cone form is position-specific: growth cone form in fact reflects specific behaviors, including rate and tempo of extension, that are more or less prominent in different locales in which growth cones are situated. Other studies show that growth cones interact with cells along the pathway, both specialized nonneuronal cells and other neurons, some expressing known guidance molecules. The present challenge is to bridge dynamic imaging with electron microscopy and molecular localization, in order to link growth cone behaviors with cell and molecular interactions in the natural setting in which growth cones extend.  相似文献   

10.
11.
The controlled extension of neurites is essential not only for nervous system development, but also for effective nerve regeneration after injury. This process is critically dependent on microtubule assembly since axons fail to elongate in the presence of drugs which disrupt normal assembly dynamics. For this reason, neurite outgrowth is potentially controllable by manipulation of the assembly state of the intracellular array of microtubules. Therefore, understanding how microtubule assembly dynamics and neurite outgrowth are coupled, in the absence of drugs, can lend valuable insight into the control and guidance of the outgrowth process. In the present study we characterized the stochastic dynamics of neurite outgrowth and its corresponding microtubule array, which advances concomitantly with the advance of the nerve growth cone, the highly motile structure at the terminus of the growing neurite, using reported fluorescent microscopic image sequences (Tanaka and Kirschner, 1991, J. Cell Biol. 115:345-363). Although previously modeled as an uncorrelated random walk, the stochastic advance of the growth cone was found to be anticorrelated over a time scale of approximately 4 min, meaning that growth cone advances tended to be followed by growth cone retractions approximately 4 min later. The observed anticorrelation most likely reflects the periodic stops and starts of neurite outgrowth that have been reported anecdotally. A strikingly similar pattern of anticorrelation was also identified in the advance of the growth cone's microtubule array. Cross-correlation analysis showed that growth cone dynamics tended to precede microtubule dynamics on a time scale of approximately 0-2 min, while microtubules tended to precede growth cone dynamics on a approximately 0-20-s time scale, indicating a close temporal coupling between microtubule and growth cone dynamics. Finally, the scaling of the mean-squared displacements with time for both the growth cone and microtubules suggested a fractional Brownian motion model which accounts for the observed anticorrelation of growth cone and microtubule advance. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
The nerve growth cone binds to a complex array of guidance cues in its local environment that influence cytoskeletal interactions to control the direction of subsequent axon outgrowth. How this occurs is a critical question and must certainly involve signal transduction pathways. The paper by Suter and Forscher (2001)(this issue) begins to address how one such pathway, an Src family tyrosine kinase, enhances cytoskeletal linkage to apCAM, a permissive extracellular cue for Aplysia growth cones. Interestingly, they show that applied tension increases this kinase's localized phosphorylation that in turn further strengthens linkage. This suggests a potential positive feedback mechanism for amplifying and discriminating guidance information to guide growth cone motility.  相似文献   

13.
《The Journal of cell biology》1994,127(4):1071-1084
We have studied the role of vinculin in regulating integrin-dependent neurite outgrowth in PC12 cells, a neuronal cell line. Vinculin is a cytoskeletal protein believed to mediate interactions between integrins and the actin cytoskeleton. In differentiated PC12 cells, the cell body, the neurite, and the growth cone contain vinculin. Within the growth cone, both the proximal region of "consolidation" and the more distal region consisting of lamellipodia and filopodia contain vinculin. To study the role of vinculin in neurite outgrowth, we generated vinculin-deficient isolates of PC12 cell lines by transfection with vectors expressing antisense vinculin RNA. In some of these cell lines, vinculin levels were reduced to 18-23% of normal levels. In the vinculin-deficient cell lines, neurite outgrowth on laminin was significantly reduced. In time-lapse analysis, growth cones advanced much more slowly than normal. Further analysis indicated that this deficit could be explained in large part by changes in the behaviors of filopodia and lamellipodia. Filopodia were formed in normal numbers, extended at normal rates, and extended to approximately normal lengths, but were much less stable in the vinculin deficient compared to control PC12 cells. Similarly, lamellipodia formed and grew nearly normally, but were dramatically less stable in the vinculin- deficient cells. This can account for the reduction in rate of growth cone advance. These results indicate that interactions between integrins and the actin-based cytoskeleton are necessary for stability of both filopodia and lamellipodia.  相似文献   

14.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   

15.
Zebrafish (Danio rerio) is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr−1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day−1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF)-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca2+-imaging revealed local elevation of cytoplasmic Ca2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development, chemotropic axon guidance, and mechanisms underlying inhibition of neural regeneration in vitro, and complement observations made in vivo.  相似文献   

16.
Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.  相似文献   

17.
In the fundamental process of neuronal path-finding, a growth cone at the tip of every neurite detects and follows multiple guidance cues regulating outgrowth and initiating directional changes. While the main focus of research lies on the cytoskeletal dynamics underlying growth cone advancement, we investigated collapse and retraction mechanisms in NG108-15 growth cones transiently transfected with mCherry-LifeAct and pCS2+/EMTB-3XGFP for filamentous actin and microtubules, respectively. Using fluorescence time lapse microscopy we could identify two distinct modes of growth cone collapse leading either to neurite retraction or to a controlled halt of neurite extension. In the latter case, lateral movement and folding of actin bundles (filopodia) confine microtubule extension and limit microtubule-based expansion processes without the necessity of a constantly engaged actin turnover machinery. We term this previously unreported second type fold collapse and suggest that it marks an intermediate-term mode of growth regulation closing the gap between full retraction and small scale fluctuations.  相似文献   

18.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

19.
Accumulating evidence indicates that receptor protein tyrosine phosphatases (rPTPs) play major roles in growth cone migration. We have previously shown that the growth cones of the multiple parallel processes of an identified leech embryonic cell, the Comb cell (CC), express high levels of a leukocyte antigen-related (LAR)-like rPTP, HmLAR2. Embryonic injection of a polyclonal antibody to the receptor's ectodomain resulted in reduced process outgrowth and in processes crossing over each other, a behavior that is seldom observed in normal or control animals. Here we present results of injecting a soluble Fc-HmLAR2 ectodomain fusion protein into embryos in order to bind the endogenous ligands of HmLAR2. Single injections of the Fc-chimeric protein into the developing embryo resulted, 12 to 24 h postinjection, in clear morphological abnormalities, ranging from abnormally directed CC processes and crossovers to apparent growth cone collapse. At later times, 2 to 5 days post injection, growth cones appeared to have recovered and processes had continued to extend, but effects of the earlier guidance errors remained, with the CCs displaying a relatively high incidence of proximal guidance errors. When injected into the germinal plate of developing embryos, the fusion protein was found to bind selectively to the processes of the CCs themselves, in contrast to control injections of Fc alone or closely related Fc-tagged proteins, which did not decorate the CCs. Double-labeling experiments revealed an early phase of Fc-HmLAR2 labeling (within 20 min after application), during which the growth cones and filopodia of the CC showed significant binding of the receptor ectodomain, and a later phase (1-2 h after injection), when most of the label was redistributed away from the growth cones and into the proximal processes of the CC. In culture, HmLAR2-transfected COS cells were found to selectively bind the Fc-recombinant protein, but not Fc-tagged proteins bearing other closely related receptor ectodomains, demonstrating that the HmLAR2 ectodomain is capable of interacting homophilically. Together, our observations demonstrate that the rPTP HmLAR2 is critically involved in CC process extension through its participation in the regulation of growth cone structure, migration, and navigation. Moreover, since our experiments also indicate that HmLAR2 can bind to itself, we hypothesize that HmLAR2 has a key role in the mechanism of mutual repulsion that maintains the parallel growth of adjacent CC projections.  相似文献   

20.
Growth cones are specialized sensorimotor structures at the tips of neurites implicated in pathfinding decisions and axonal outgrowth during neuronal development. We generated a mouse monoclonal antibody (mAb 2G13) against chick tectum and found that the antibody exclusively labelled axonal growth cones, particularly their filopodia and lamellipodia, in developing rat CNS and in embryonic neurons in culture. The high fidelity of the staining of growth cones by mAb 2G13 means that the antibody will be a useful marker for identifying growth cones. In growth cones of cultured neurons, mAb 2G13 labelling is intracellular and mainly associated with the filamentous actin cytoskeleton. Experiments with cytochalasins, which depolymerise filamentous actin, showed that 2G13p (the protein recognised by mAb 2G13) is physically associated with filamentous actin in growth cones. These properties of 2G13p suggest a role in growth cone motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号