首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel mechanism for Clostridium botulinum neurotoxin inhibition   总被引:1,自引:0,他引:1  
Clostridium botulinum neurotoxins are zinc endopeptidase proteins responsible for cleaving specific peptide bonds of proteins of neuroexocytosis apparatus. The ability of drugs to interfere with toxin's catalytic activity is being evaluated with zinc chelators and metalloprotease inhibitors. It is important to develop effective pharmacological treatment for the intact holotoxin before the catalytic domain separates and enters the cytosol. We present here evidence for a novel mechanism of an inhibitor binding to the holotoxin and for the chelation of zinc from our structural studies on Clostridium botulinum neurotoxin type B in complex with a potential metalloprotease inhibitor, bis(5-amidino-2-benzimidazolyl)methane, and provide snapshots of the reaction as it progresses. The binding and inhibition mechanism of this inhibitor to the neurotoxin seems to be unique for intact botulinum neurotoxins. The environment of the active site rearranges in the presence of the inhibitor, and the zinc ion is gradually removed from the active site and transported to a different site in the protein, probably causing loss of catalytic activity.  相似文献   

2.
Botulinum neurotoxins (serotypes A-G), the most toxic substances known to humankind, cause flaccid muscle paralysis by blocking acetylcholine release at nerve-muscle junctions through a very specific and exclusive endopeptidase activity against SNARE proteins of presynaptic exocytosis machinery. We have examined polypeptide folding of the endopeptidase moiety of botulinum neurotoxin/A (the light chain) under conditions of its optimal enzymatic activity and have found that one of its stable conformational states is a molten-globule, which retains over 60% of its optimal enzyme activity. More importantly, we have discovered that the light chain acquires a novel pre-imminent molten-globule enzyme conformation at the physiologically relevant temperature, 37 degrees C. The pre-imminent molten-globule enzyme form also exhibited the maximum endopeptidase activity against its intracellular substrate, SNAP-25 (synaptosomal associated protein of 25 kDa). These findings will not only open new avenues to design effective diagnostics and antidotes against botulism but also provide new information on enzymatically active molten-globule or molten-globule like structures.  相似文献   

3.
Kukreja RV  Singh BR 《Biochemistry》2007,46(49):14316-14324
Seven serotypes of botulinum neurotoxins, the most toxic substances known to mankind, are each produced by different strains of Clostridium botulinum along with a group of neurotoxin-associated proteins (NAPs). NAPs play a critical role in the toxicoinfection process of botulism in addition to their role in protecting the neurotoxin from proteolytic digestion in the GI tract as well as from adverse environmental conditions. In this study we have investigated the effect of temperature on the structural and functional stability of BoNT/A complex (BoNT/AC) and BoNT/E complex (BoNT/EC). Although the NAPs in the two complexes are quite different, both groups of NAPs activate the endopeptidase activities of their BoNTs without any need to reduce the disulfide bonds between light and heavy chains of respective BoNTs. BoNT/AC attains optimum enzyme activity at the physiological temperature of 37 degrees C whereas BoNT/EC is maximally active at 45 degrees C, and this is accompanied by conformational alterations in its polypeptide folding at this temperature, leading to favorable binding with its intracellular substrate, SNAP-25, and subsequent cleavage of the latter. BoNT/A in its complex form is found to be structurally more stable against temperature whereas BoNT/E in its complex form is functionally better protected against temperature. Based on the analysis of isolated NAPs we have observed that the structural stability of the BoNT/AC is contributed by the NAPs. In addition to the unique structural conditions in which the enzyme remains active, functional stability of botulinum neurotoxins against temperature plays a critical role in the survival of the agent in cooked food and in food-borne botulism.  相似文献   

4.
The seven serotypes of botulinum neurotoxins (A-G) produced by Clostridium botulinum share significant sequence homology and structural similarity. The functions of their individual domains and the modes of action are also similar. However, the substrate specificity and the peptide bond cleavage selectivity of their catalytic domains are different. The reason for this unique specificity of botulinum neurotoxins is still baffling. If an inhibitor leading to a therapeutic drug common to all serotypes is to be developed, it is essential to understand the differences in their three-dimensional structures that empower them with this unique characteristic. Accordingly, high-resolution structures of all serotypes are required, and toward achieving this goal the crystal structure of the catalytic domain of C. botulinum neurotoxin type E has been determined to 2.1 A resolution. The crystal structure of the inactive mutant Glu212-->Gln of this protein has also been determined. While the overall conformation is unaltered in the active site, the position of the nucleophilic water changes in the mutant, thereby causing it to lose its ability to activate the catalytic reaction. The structure explains the importance of the nucleophilic water and the charge on Glu212. The structural differences responsible for the loss of activity of the mutant provide a common model for the catalytic pathway of Clostridium neurotoxins since Glu212 is conserved and has a similar role in all serotypes. This or a more nonconservative mutant (e.g., Glu212-->Ala) could provide a novel, genetically modified protein vaccine for botulinum.  相似文献   

5.
Clostridium botulinum neurotoxins are the most potent toxins to humans and cause paralysis by blocking neurotransmitter release at the presynaptic nerve terminals. The toxicity involves four steps, viz., binding to neuronal cells, internalization, translocation, and catalytic activity. While the catalytic activity is a zinc endopeptidase activity on the SNARE complex proteins, the translocation is believed to be a pH-dependent process allowing the translocation domain to change its conformation to penetrate the endosomal membrane. Here, we report the crystal structures of botulinum neurotoxin type B at various pHs and of an apo form of the neurotoxin, and discuss the role of metal ions and the effect of pH variation in the biological activity. Except for the perturbation of a few side chains, the conformation of the catalytic domain is unchanged in the zinc-depleted apotoxin, suggesting that zinc's role is catalytic. We have also identified two calcium ions in the molecule and present biochemical evidence to show that they play a role in the translocation of the light chain through the membrane.  相似文献   

6.
The catalytic domain of clostridial neurotoxins is a substrate of tyrosine-specific protein kinases. The functional role of tyrosine phosphorylation and also the number and location of its (their) phosphorylation site(s) are yet elusive. We have used the recombinant catalytic domain of botulinum neurotoxin E (BoNT E) to examine these issues. Bacterially expressed and purified BoNT E catalytic domain was fully active, and was phosphorylated in vitro by the tyrosine-specific kinase Src. Tyrosine phosphorylation of the catalytic domain increased the protein thermal stability without affecting its proteolytic activity. Covalent modification of the endopeptidase promoted a disorder-to-order transition, as evidenced by the 35% increment of the alpha-helical content, which resulted in a 4 degrees C increase of its denaturation temperature. Site-directed replacement of tyrosine at position 67 completely abolished phosphate incorporation by Src. Constitutively unphosphorylated endopeptidase mutants exhibited functional properties virtually identical to those displayed by the nonphosphorylated wild-type catalytic domain. These findings indicate the presence of a single phosphorylation site in the catalytic domain of clostridial neurotoxins, and that its covalent modification primarily modulates the protein thermostability.  相似文献   

7.
Agarwal R  Binz T  Swaminathan S 《Biochemistry》2005,44(23):8291-8302
Clostridial neurotoxins comprising the seven serotypes of botulinum neurotoxins and tetanus neurotoxin are the most potent toxins known to humans. Their potency coupled with their specificity and selectivity underscores the importance in understanding their mechanism of action in order to develop a strategy for designing counter measures against them. To develop an effective vaccine against the toxin, it is imperative to achieve an inactive form of the protein which preserves the overall conformation and immunogenicity. Inactive mutants can be achieved either by targeting active site residues or by modifying the surface charges farther away from the active site. The latter affects the long-range forces such as electrostatic potentials in a subtle way without disturbing the structural integrity of the toxin causing some drastic changes in the activity/environment. Here we report structural and biochemical analysis on several mutations on Clostridium botulinum neurotoxin type E light chain with at least two producing dramatic effects: Glu335Gln causes the toxin to transform into a persistent apoenzyme devoid of zinc, and Tyr350Ala has no hydrolytic activity. The structural analysis of several mutants has led to a better understanding of the catalytic mechanism of this family of proteins. The residues forming the S1' subsite have been identified by comparing this structure with a thermolysin-inhibitor complex structure.  相似文献   

8.
Clostridium botulinum neurotoxins are potently toxic proteins of 150 kDa with specific endopeptidase activity for SNARE proteins involved in vesicle docking and release. Following treatment with trypsin, a fragment of botulinum neurotoxin serotype A that lacks the C-terminal domain responsible for neuronal cell binding, but retains full catalytic activity, can be obtained. Known as the LH(N) fragment, we report the development of a recombinant expression and purification scheme for the isolation of comparable fragments of neurotoxin serotypes B and C. Expressed as maltose-binding protein fusions, both have specific proteolytic sites present between the fusion tag and the light chain to facilitate removal of the fusion, and between the light chain endopeptidase and the H(N) translocation domains to facilitate activation of the single polypeptide. We have also used this approach to prepare a new variant of LH(N)/A with a specific activation site that avoids the need to use trypsin. All three LH(N)s are enzymatically active and are of low toxicity. The production of specifically activatable LH(N)/A, LH(N)/B, and LH(N)/C extends the opportunities for exploitation of neurotoxin fragments. The potential utility of these fragments is discussed.  相似文献   

9.
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

11.
Mycobacterium tuberculosis is able to establish a non-replicating state and survive in an intracellular habitat for years. Resuscitation of dormant M. tuberculosis bacteria is promoted by resuscitation-promoting factors (Rpfs), which are secreted from slowly replicating bacteria close to dormant bacteria. Here we report the crystal structure of a truncated form of RpfB (residues 194-362), the sole indispensable Rpf of the five Rpfs encoded in this bacterium genome. The structure, denoted as ΔDUFRpfB, exhibits a comma-like shape formed by a lysozyme-like globular catalytic domain and an elongated G5 domain, which is widespread among cell surface binding proteins. The G5 domain, whose structure was previously uncharacterised, presents some peculiar features. The basic structural motif of this domain, which represents the tail of the comma-like structure, is a novel super-secondary-structure element, made of two β-sheets interconnected by a pseudo-triple helix. This intricate organisation leads to the exposure of several backbone hydrogen-bond donors/acceptors. Mutagenesis analyses and solution studies indicate that this protein construct as well as the full-length form are elongated monomeric proteins. Although ΔDUFRpfB does not self-associate, the exposure of structural elements (backbone H-bond donors/acceptors and hydrophobic side chains) that are usually buried in globular proteins is typically associated with adhesive properties. This suggests that the RpfB G5 domain has a cell-wall adhesive function, which allows the catalytic domain to be properly oriented for the cleavage reaction. Interestingly, sequence comparisons indicate that these structural features are also shared by G5 domains involved in biofilm formation.  相似文献   

12.
Botulinum neurotoxins (BoNTs), the most poisonous member of class A biothreat agent, cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. In its mechanism of action, the catalytic domain (light chain (LC) of BoNT) is transported to the cytosol by the heavy chain (HC) in order to reach its proteolytic substrates. The BoNT HC forms a membrane channel under acidic conditions encountered in endosomes to serve as a passageway for LC to enter into cytosol. We demonstrate here that BoNT/A LC undergoes unique structural changes under the low pH conditions, and adopts a molten globule state, exposing substantial number of hydrophobic groups. The flexibility of the molten globular structure combined with retention of the secondary structure and exposure of specific residues of LC for interaction with the HC, allows its translocation through the narrow endosomal membrane channel.  相似文献   

13.
Botulinum neurotoxins comprise seven distinct serotypes (A-G) produced by Clostridium botulinum. The crystal structure of the binding domain of the botulinum neurotoxin type B (BBHc) has been determined to 2A resolution. The overall structure of BBHc is well ordered and similar to that of the binding domain of the holotoxin. However, significant structural changes occur at what would be the interface of translocation and binding domains of the holotoxin. The loop 911-924 shows a maximum displacement of 14.8A at the farthest point. The N-terminal helix reorients and moves by 19.5A from its original position. BBHc is compared with the binding domain of the holotoxin of botulinum type A and B, and the tetanus C-fragment to characterize the heavy chain-carbohydrate interactions. The probable reasons for different binding affinity of botulinum and tetanus toxins are discussed.  相似文献   

14.
ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of d-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.  相似文献   

15.
The hierarchy of lattice Monte Carlo models described in the accompanying paper (Kolinski, A., Skolnick, J. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352, 1994) is applied to the simulation of protein folding and the prediction of 3-dimensional structure. Using sequence information alone, three proteins have been successfully folded: the B domain of staphylococcal protein A, a 120 residue, monomeric version of ROP dimer, and crambin. Starting from a random expanded conformation, the model proteins fold along relatively well-defined folding pathways. These involve a collection of early intermediates, which are followed by the final (and rate-determining) transition from compact intermediates closely resembling the molten globule state to the native-like state. The predicted structures are rather unique, with native-like packing of the side chains. The accuracy of the predicted native conformations is better than those obtained in previous folding simulations. The best (but by no means atypical) folds of protein A have a coordinate rms of 2.25 Å from the native Cα trace, and the best coordinate rms from crambin is 3.18 Å. For ROP monomer, the lowest coordinate rms from equivalent Cαs of ROP dimer is 3.65 Å. Thus, for two simple helical proteins and a small α/β protein, the ability to predict protein structure from sequence has been demonstrated. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Most core components of the neurotransmitter release machinery have homologues in other types of intracellular membrane traffic, likely underlying a universal mechanism of intracellular membrane fusion. However, no clear similarity between Munc13s and protein families generally involved in membrane traffic has been reported, despite the essential nature of Munc13s for neurotransmitter release. This crucial function was ascribed to a minimal Munc13 region called the MUN domain, which likely participates in soluble N-ethylmaleimide sensitive factor attachment protein receptor complex (SNARE) assembly and is also found in Ca2+-dependent activator protein for secretion. We have now used comparative sequence and structural analyses to study the structure and evolutionary origin of the MUN domain. We found weak yet significant sequence similarities between the MUN domain and a set of protein subunits from several related vesicle tethering complexes, such as Sec6 from the exocyst complex and Vps53 from the Golgi-associated retrograde protein complex. Such an evolutionary relationship allows structure prediction of the MUN domain and suggests functional similarities between MUN domain-containing proteins and multisubunit tethering complexes such as exocyst, conserved oligomeric Golgi complex, Golgi-associated retrograde protein complex, and Dsl1p. These findings further unify the mechanism of neurotransmitter release with those of other types of intracellular membrane traffic and, in turn, support a role for tethering complexes in soluble N-ethylmaleimide sensitive factor attachment protein receptor complex assembly.  相似文献   

17.
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR.  相似文献   

18.
Botulinum neurotoxins (BoNTs) are the most toxic proteins known to cause flaccid muscle paralysis as a result of inhibition of neurotransmitter release from peripheral cholinergic synapses. BoNT type A (BoNT/A) is a 150 kDa protein consisting of two major subunits: light chain (LC) and heavy chain (HC). The LC is required for the catalytic activity of neurotoxin, whereas the C and N terminal domains of the HC are required for cell binding, and translocation of LC across the endosome membranes, respectively. To better understand the structural and functional aspects of BoNT/A intoxication we report here the development of high yield Escherichia coli expression system (2–20-fold higher yield than the value reported in the literature) for the production of recombinant light chain-translocation domain (rLC-TD/A) module of BoNT/A which is catalytically active and translocation competent. The open reading frame of rLC-TD/A was PCR amplified from deactivated recombinant BoNT/A gene (a non-select agent reagent), and was cloned using pET45b (+) vector to express in E. coli cells. The purification procedure included a sequential order of affinity chromatography, trypsinization, and anion exchange column chromatography. We were able to purify?>?95% pure, catalytically active and structurally well-folded protein. Comparison of enzyme kinetics of purified LC-TD/A to full-length toxin and recombinant light chain A suggest that the affinity for the substrate is in between endopeptidase domain and botulinum toxin. The potential application of the purified protein has been discussed in toxicity and translocation assays.  相似文献   

19.
Type I cyclic guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase (PKG) is involved in the nitric oxide/cGMP signaling pathway. PKG has been identified in many different species, ranging from unicelõlular organisms to mammals. The enzyme serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses, ranging from smooth-muscle relaxation to neuronal synaptic plasticity. In the absence of a crystal structure, the three-dimensional structure of the homodimeric 152-kDa kinase PKG is unknown; however, there is evidence that the kinase adopts a distinct cGMP-dependent active conformation when compared to the inactive conformation. We performed mass-spectrometry-based hydrogen/deuterium exchange experiments to obtain detailed information on the structural changes in PKG Iα induced by cGMP activation. Site-specific exchange measurements confirmed that the autoinhibitory domain and the hinge region become more solvent exposed, whereas the cGMP-binding domains become more protected in holo-PKG (dimeric PKG saturated with four cGMP molecules bound). More surprisingly, our data revealed a specific disclosure of the substrate-binding region of holo-PKG, shedding new light into the kinase-activation process of PKG.  相似文献   

20.
The thermal denaturation of lysozyme dissolved in aqueous phosphate buffer (pH 5.1) and glycerol was studied by Fourier-transform infrared (FTIR) spectroscopy. In both solvents, a single temperature-induced conformational transition was observed but at the distinctly different temperatures of 73 °C in aqueous buffer and 94 ± 2 °C in glycerol. No changes in the secondary structure were observed in glycerol up to 90 °C. Thus, FTIR data were consistent with the formation of a highly ordered molten globule state at temperatures below 90 °C followed by lysozyme unfolding at higher temperatures in glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号