共查询到20条相似文献,搜索用时 15 毫秒
1.
Lucia Rubio Fernandez Guy Vandenbussche Nancy Roosens Cédric Govaerts Erik Goormaghtigh Nathalie Verbruggen 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(9):1016-1023
Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd2+, Cu2+, Zn2+ and Pb2+, with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions. 相似文献
2.
Jordi Domènech Rubén Orihuela Gisela Mir Marisa Molinas Sílvia Atrian Mercè Capdevila 《Journal of biological inorganic chemistry》2007,12(6):867-882
In this work, we have analyzed both at stoichiometric and at conformational level the CdII-binding features of a type 2 plant metallothionein (MT) (the cork oak, Quercus suber, QsMT). To this end four peptides, the wild-type QsMT and three constructs previously engineered to characterize its ZnII- and CuI-binding behaviour, were heterologously produced in Escherichia coli cultures supplemented with CdII, and the corresponding complexes were purified up to homogeneity. The CdII-binding ability of these recombinant peptides was determined through the chemical, spectroscopic and spectrometric characterization
of the recovered clusters. Recombinant synthesis of the four QsMT peptides in cadmium-rich media rendered complexes with a
higher metal content than those obtained from zinc-supplemented cultures and, consequently, the recovered CdII species are nonisostructural to those of ZnII. Also of interest is the fact that three out of the four peptides yielded recombinant preparations that included S2−-containing CdII complexes as major species. Subsequently, the in vitro ZnII/CdII replacement reactions were studied, as well as the in vitro acid denaturation and S2− renaturation reactions. Finally, the capacity of the four peptides for preventing cadmium deleterious effects in yeast cells
was tested through complementation assays. Consideration of all the results enables us to suggest a hairpin folding model
for this typical type 2 plant CdII-MT complex, as well as a nonnegligible role of the spacer in the detoxification function of QsMT towards cadmium.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
3.
It has been observed that the evolutionary distances of interacting proteins often display a higher level of similarity than those of noninteracting proteins. This finding indicates that interacting proteins are subject to common evolutionary constraints and constitutes the basis of a method to predict protein interactions known as mirrortree. It has been difficult, however, to identify the direct cause of the observed similarities between evolutionary trees. One possible explanation is the existence of compensatory mutations between partners' binding sites to maintain proper binding. This explanation, though, has been recently challenged, and it has been suggested that the signal of correlated evolution uncovered by the mirrortree method is unrelated to any correlated evolution between binding sites. We examine the contribution of binding sites to the correlation between evolutionary trees of interacting domains. We show that binding neighborhoods of interacting proteins have, on average, higher coevolutionary signal compared with the regions outside binding sites; however, when the binding neighborhood is removed, the remaining domain sequence still contains some coevolutionary signal. In conclusion, the correlation between evolutionary trees of interacting domains cannot exclusively be attributed to the correlated evolution of the binding sites or to common evolutionary pressure exerted on the whole protein domain sequence, each of which contributes to the signal measured by the mirrortree approach. 相似文献
4.
Estevão A. Peroza Wolfram Meyer-Klaucke Eva Freisinger 《Journal of inorganic biochemistry》2009,103(3):342-353
Metallothioneins are small cysteine-rich proteins believed to play a role, among others, in the homeostasis of essential metal ions such as ZnII and CuI. Recently, we could show that wheat Ec-1 is coordinating its six ZnII ions in form of metal-thiolate clusters analogously to the vertebrate metallothioneins. Specifically, two ZnII ions are bound in the N-terminal and four in the C-terminal domain. In the following, we will present evidence for the relative independence of the two domains from each other with respect to their metal ion binding abilities, and uncover three intriguing peculiarities of the protein. Firstly, one ZnII ion of the N-terminal domain is relative resistant to complete replacement with CdII indicating the presence of a ZnII-binding site with increased stability. Secondly, the C-terminal domain is able to coordinate an additional fifth metal ion, though with reduced affinity, which went undetected so far. Finally, reconstitution of apoEc-1 with an excess of ZnII shows a certain amount of sub-stoichiometrically metal-loaded species. The possible relevance of these finding for the proposed biological functions of wheat Ec-1 will be discussed. In addition, extended X-ray absorption fine structure (EXAFS) measurements on both, the full-length and the truncated protein, provide final evidence for His participation in metal ion binding. 相似文献
5.
Thanh T. Ngu 《Biochemical and biophysical research communications》2010,396(2):206-212
Bismuth compounds are currently used to treat gastric ailments and to prevent the toxic side effects of cancer treatments. The affinity of bismuth for binding to sulfur compounds has been reported and one such target biomolecule is the cysteine-rich metalloprotein metallothionein. Renal mammalian metallothionein has been shown to be induced by Bi salts, with the Bi3+ binding to the renal MT. However, the exact metal-to-metallothionein stoichiometric ratios for the 2-domain βα mammalian protein and the individual β and α domain fragments remain unknown. We now report that the maximum metal-to-MT stoichiometries for the individual domain fragments and the entire 2-domain protein are Bi3-S9-βhMT, Bi4-S11-αhMT, and Bi7-S20-βαhMT, respectively. Electrospray mass spectrometry data also unambiguously show the existence of partially metalated Bi-containing MT species during the titration of apo-MT with Bi3+, which demonstrates that Bi-metalation to MT occurs in a noncooperative manner. 相似文献
6.
Metallothioneins are cysteine-rich, metal-binding proteins ubiquitously expressed in living organisms. In the last past years, a plethora of vertebrate metallothionein sequences have become available, but so far there has been an almost absolute lack of data about sequences of metallothionein of non-avian diapsida. In the framework of the investigations on structural and functional properties of non-mammalian metallothioneins, we have cloned and sequenced the cDNAs encoding for metallothioneins of 10 squamate reptiles, belonging to 5 different infraorders. These sequences have been used to gain insight into the evolutionary history of metallothioneins in reptiles. Phylogenetic analysis shows that reptilian metallothionein phylogeny is inconsistent with the species phylogeny. Such findings allow us to hypothesize that the identified metallothionein in each squamate species used for this study might be considered a paralogous gene derived from more events of gene duplication and losses occurred during the diversification of the squamate species. Finally, through vertebrate metallothionein comparisons and phylogenetic analysis, we also add a novel contribution to the understanding of the evolution of metallothionein genes along the major vertebrate lineages. 相似文献
7.
Francisco Amaro María Del Pilar de Lucas Ana Martín-González Juan Carlos Gutiérrez 《Gene》2008,423(1):85-91
We report the cloning and characterization of two new metallothionein (MT) genes (TrosMTT1 and TrosMTT2), isolated as cDNAs, from the ciliated protozoa Tetrahymena rostrata. The TrosMTT1 inferred protein has been identified as a CdMT and included into the 7a subfamily of Tetrahymena MTs, while TrosMTT2 has been identified as a CuMT (including it into 7b subfamily), due to its similarity to TpigMT-2 and its significant induction by copper. TrosMTT1 protein sequence reveals a remarkably regular and hierarchical modular organization, as it is known for other Tetrahymena CdMTs, showing a bi-modular structure. TrosMTT2 presents a structural organization based on CKCX(2-5)CKC repeats, like it occurs in other Tetrahymena CuMTs, indicating that an evolutionary history based on intra-gene duplications might be also possible. Both are also multi-stress-inducible genes because they are induced by other heavy metals and stressors, as it has been shown by quantitative real-time RT-PCR. It is the first time that the gene expression of a putative Tetrahymena CuMT is analyzed by quantitative PCR, confirming it as a CuMT. These two new Tetrahymena MTs complete, at present, the actual view of this protein superfamily, and corroborate the unique features of ciliate MTs. Furthermore, both, a comparative analysis of relative gene expression values obtained by quantitative RT-PCR on other Tetrahymena MT genes and an analysis of the different Tetrahymena MTs based on the different Cys clusters of these proteins are carried out, which show an update view of Tetrahymena MT gene family. 相似文献
8.
Maya Schushan Minghui Xiang Pavel Bogomiakov Rajini Rao Nir Ben-Tal 《Journal of molecular biology》2010,396(5):1181-1196
Human NHA2 is a poorly characterized Na+/H+ antiporter recently implicated in essential hypertension. We used a range of computational tools and evolutionary conservation analysis to build and validate a three-dimensional model of NHA2 based on the crystal structure of a distantly related bacterial transporter, NhaA. The model guided mutagenic evaluation of transport function, ion selectivity, and pH dependence of NHA2 by phenotype screening in yeast. We describe a cluster of essential, highly conserved titratable residues located in an assembly region made of two discontinuous helices of inverted topology, each interrupted by an extended chain. Whereas in NhaA, oppositely charged residues compensate for partial dipoles generated within this assembly, in NHA2, polar but uncharged residues suffice. Our findings led to a model for transport mechanism that was compared to the well-known electroneutral NHE1 and electrogenic NhaA subtypes. This study establishes NHA2 as a prototype for the poorly understood, yet ubiquitous, CPA2 antiporter family recently recognized in plants and metazoans and illustrates a structure-driven approach to derive functional information on a newly discovered transporter. 相似文献
9.
Kosinski J Plotz G Guarné A Bujnicki JM Friedhoff P 《Journal of molecular biology》2008,382(3):610-627
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLα, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLα heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLα. According to our model, this domain of MutLα comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLα is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLα. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLα in vitro. 相似文献
10.
Diversity in antibody structure is crucial to the ability of the adaptive immune system to recognize the tremendously diverse set of potential antigens. The diversity in structure is most apparent in the six hypervariable loops of the complementarity-determining regions. However, given that these loops occur at the interface of the heavy- and light-chain variable domains and form the antigen-binding site, the relative orientation of the heavy- and light-chain variable domains can create another source of structural diversity leading to changes in antigen binding. Here, we first reexamine the diversity of VL:VH orientations in existing antibody crystal structures using 153 nonredundant sequences, demonstrating that the variation in VL:VH orientation is greater than that expected from effects of crystal packing, antigen binding, or the presence of antibody constant regions and increases, on average, as sequence similarity decreases for residues in the interface between the domains. We developed a tool for predicting the relative orientations of the heavy- and light-chain variable domains using side-chain rotamer sampling in the interface and molecular-mechanics-based energy calculations. When using variable domain backbones from the crystal structures, the predicted orientation is very close (< 1 Å RMSD) to the crystallographically observed orientation in most cases, confirming that the VL:VH orientation is determined by the antibody sequence and suggesting an approach to predicting the relative orientation of the variable domains when building homology models of antibodies. When applied to antibody homology models generated from templates with 55-75% sequence identity, we predict the VL:VH orientation of 20 antibodies with an average/median RMSD of 2.1/1.6 Å to the crystal structures. 相似文献
11.
E M'kandawire M Syakalima K Muzandu G Pandey M Simuunza SM Nakayama YK Kawai Y Ikenaka M Ishizuka 《Gene》2012,506(2):310-316
The study determined heavy metal concentrations and MT1 nucleotide sequence [phylogeny] in liver of the Kafue lechwe. Applicability of MT1 as a biomarker of pollution was assessed. cDNA-encoding sequences for lechwe MT1 were amplified by RT-PCR to characterize the sequence of MT1 which was subjected to BLAST searching at NCBI. Phylogenetic relationships were based on pairwise matrix of sequence divergences calculated by Clustal W. Phylogenetic tree was constructed by NJ method using PHILLIP program. Metals were extracted by acid digestion and concentrations of Cr, Co, Cu, Zn, Cd, Pb, and Ni were determined using an AAS. MT1 mRNA expression levels were measured by quantitative comparative real-time RT-PCR. Lechwe MT1 has a length of 183bp, which encode for MT1 proteins of 61AA, which include 20 cysteines. Nucleotide sequence of lechwe MT1 showed identity with sheep MT (97%) and cattle MT1E (97%). Phylogenetic tree revealed that lechwe MT1 was clustered with sheep MT and cattle MT1E. Cu and Ni concentrations and MT1 mRNA expression levels of lechwe from Blue Lagoon were significantly higher than those from Lochinvar (p<0.05). Concentrations of Cd and Cu, Co and Cu, Co and Pb, Ni and Cu, and Ni and Cr were positively correlated. Spearman's rank correlations also showed positive correlations between Cu and Co concentrations and MT mRNA expression. PCA further suggested that MT mRNA expression was related to Zn and Cd concentrations. Hepatic MT1 mRNA expression in lechwe can be used as biomarker of heavy metal pollution. 相似文献
12.
13.
Agneta Oskarsson Katherine S. Squibb Bruce A. Fowler 《Biochemical and biophysical research communications》1982,104(1):290-298
Gel chromatography of kidney postmitochondrial fractions from control rats 2 hr after injection of 203Pb or after in vitro incubation with 203Pb disclosed the presence of two fractionated Pb-binding components plus binding in the void volume and total volume regions. The binding of Pb to the two components, with molecular weights of 11,500 and 63,000 daltons, was markedly decreased in Pb-pretreated rats. Sodium dodecyl sulfate-gel electrophoresis and autoradiography showed the presence of one major 203Pb band with an estimated molecular weight of 60,000 daltons. The 11,500-dalton peak did not incorporate 14C-leucine nor did concomitant administration of cycloheximide with the 203Pb inhibit incorporation of 203Pb activity, suggesting that the component is a preformed constituent of the kidney. In vitro incubation of brain, liver and lung postmitochondrial supernatants with 203Pb disclosed that these two binding components were also present in brain but not in liver or lung, suggesting a target tissue-specific localization for these Pb-binding macromolecules. 相似文献
14.
为探讨镉(Cd)对机体抗氧化功能及金属硫蛋白(MT)的影响,在室内分别用不添加Cd2 和添加浓度为20 mgkg-1 Cd2 培养基培养的黑腹果蝇来饲喂4种不同生境下(S1,S2,S3和S4)拟水狼蛛,于饲喂5d、10d和20d后,分别测定其体内MT和丙二醛 (MDA)的含量及超抗氧化酶(GST、SOD和CAT)活性。结果表明:1,不同生境拟水狼蛛用不添加Cd2 培养基培养的黑腹果蝇饲喂后,不添加Cd2 对照组拟水狼蛛镉的积累量和MT含量无显著变化,但均显著低于添加Cd2 污染组。添加Cd2 污染组拟水狼蛛镉的积累量和MT含量都显著高于对照组,且均随着饲喂时间的延长而显著升高,具有明显的时间–效应关系(p<0.05)。2,在饲喂5d和10d后,不添加Cd饲喂的拟水狼蛛MDA含量和抗氧化酶系差异都不显著。添加Cd2 污染组(S1,S2和S3)MDA含量显著高于对照组(S4),MDA含量与饲喂时间呈显著正相关(p<0.05);GST、SOD和CAT等抗氧化酶活性污染组显著低于对照组,与饲喂时间呈显著负相关(p<0.05);饲喂20d后,污染组MDA含量和抗氧化酶(SOD和CAT)活性均与对照组无显著差异,但GST活性差异显著。 相似文献
15.
Detecting similarities between local binding surfaces can facilitate identification of enzyme binding sites and prediction of enzyme functions, and aid in our understanding of enzyme mechanisms. Constructing a template of local surface characteristics for a specific enzyme function or binding activity is a challenging task, as the size and shape of the binding surfaces of a biochemical function often vary. Here we introduce the concept of signature binding pockets, which captures information on preserved and varied atomic positions at multiresolution levels. For proteins with complex enzyme binding and activity, multiple signatures arise naturally in our model, forming a signature basis set that characterizes this class of proteins. Both signatures and signature basis sets can be automatically constructed by a method called SOLAR (Signature Of Local Active Regions). This method is based on a sequence-order-independent alignment of computed binding surface pockets. SOLAR also provides a structure-based multiple sequence fragment alignment to facilitate the interpretation of computed signatures. By studying a family of evolutionarily related proteins, we show that for metzincin metalloendopeptidase, which has a broad spectrum of substrate binding, signature and basis set pockets can be used to discriminate metzincins from other enzymes, to predict the subclass of metzincins functions, and to identify specific binding surfaces. Studying unrelated proteins that have evolved to bind to the same NAD cofactor, we constructed signatures of NAD binding pockets and used them to predict NAD binding proteins and to locate NAD binding pockets. By measuring preservation ratio and location variation, our method can identify residues and atoms that are important for binding affinity and specificity. In both cases, we show that signatures and signature basis set reveal significant biological insight. 相似文献
16.
Hematopoietic cytokines: similarities and differences in the structures, with implications for receptor binding. 总被引:7,自引:4,他引:3 下载免费PDF全文
A. Wlodawer A. Pavlovsky A. Gustchina 《Protein science : a publication of the Protein Society》1993,2(9):1373-1382
Crystal and NMR structures of helical cytokines--interleukin-4 (IL-4), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-2 (IL-2)--have been compared. Root mean square deviations in the C alpha coordinates for the conserved regions of the helices were 1-2 A between different cytokines, about twice the differences observed for independently determined crystal and solution structures of IL-4. Considerable similarity in amino acid sequence in the areas expected to interact with the receptors was detected, and the available mutagenesis data for these cytokines were correlated with structure conservation. Models of cytokine-receptor interactions were postulated for IL-4 based on its structure as well as on the published structure of human growth hormone interacting with its receptors (de Vos, A.M., Ultsch, M., & Kossiakoff, A.A., 1992, Science 255, 306-312). Patches of positively charged residues on the surfaces of helices C and D of IL-4 may be responsible for the interactions with the negatively charged residues found in the complementary parts of the IL-4 receptors. 相似文献
17.
Corentine Alauzet Hélène Marchandin Pascal Courtin Francine Mory Ludovic Lemée Jean-Louis Pons Marie-Pierre Chapot-Chartier Alain Lozniewski Estelle Jumas-Bilak 《Systematic and applied microbiology》2014
The genus Tissierella and its relatives Tepidimicrobium, Soehngenia and Sporanaerobacter comprise anaerobic Gram-positive bacilli classified along with Gram-positive cocci in a family with controversial placement designated as incertae sedis XI, in the phylum Firmicutes. We performed a top-down reappraisal of the taxonomy from the phylum to the species level within the genus Tissierella. Reconstruction of high-rank 16S rRNA gene-based phylogenies and their interpretation in a taxonomic purpose allowed defining Tissierellia classis nov. within the phylum Firmicutes while the frames of Tissierellales ord. nov. and Tissierellaceae fam. nov. have to be further strengthened. For species delineation in the genus Tissierella, we studied a population of clinical strains. Beside Tissierella praeacuta, a sub-population of five strains formed a clade in multilocus phylogenies (16S rRNA, cpn60, tpi, recA and spo0A genes). Data such as 16S rRNA gene similarity level, population structure, chromosome organization and murein type indicated that this clade corresponded to a novel species for which the name Tissierella carlieri sp. nov. is proposed, with type strain LBN 295T = AIP 268.01T = DSM 23816T = CCUG 60010T. Such an approach, associating a phylogenetic reappraisal of high-level taxonomic ranks with weak taxonomic structure and a population study for genus and species delineation is needed to strengthen the taxonomic frame of incertae sedis groups in the phylum Firmicutes. 相似文献
18.
Previous studies on various insect cell lines have displayed very high radioresistance in Lepidoptera (butterflies and moths) as compared to mammals as well as other orders of Insecta including Diptera. Since NOS is known to
modulate cellular radiation sensitivity, we carried out in silico analysis of Lepidopteran NOS and compared its structural and functional features including the sequence homology, predicted tertiary structure, post-translational
phosphorylation and intracellular localization with the other species. Our study demonstrates that Lepidopteran NOS, while carrying significant sequence homology with mammalian nNOS, has structural/ functional features that may
enhance resistance to radiation and other stress agents. A higher phosphorylation score of Lepidopteran NOS (0.885±0.02 as against 0.694±0.094 of mammalian NOS; predicted using Net Phos 2.0) was observed at many well-conserved
phosphorylation sites, which may reduce NOS activation by stress agents including radiation. Further, the primarily cytoplasmic localization of Lepidopteran NOS (score 23 against 10 of mammalian NOS, derived using WoLFPSORT),
aided by higher phosphorylation scores as well as sequence-driven cytoplasmic localizing signals, may significantly reduce amplification of extraneous oxidative damage. Based on these findings, we hypothesize that a primarily
cytosolic and less responsive NOS could significantly contribute to radioresistance of Lepidopteran insects as well as their cultured cell lines. 相似文献
19.
Mie Ø Pedersen Agnete Larsen Milena Penkowa 《Progress in histochemistry and cytochemistry》2009,44(1):1-27
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality.This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients. 相似文献