首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. While large amounts of purified proteins are required for pharmaceutical and crystallization attempts, there is an unmet need for the development of novel heterologous membrane protein overexpression systems. Specifically, we tested the application of Brevibacillus choshinensis cells for the biosynthesis of human membrane bound catechol-O-methyltransferase (hMBCOMT). In terms of the upstream stage moderate to high expression was obtained for complex media formulation with a value near 45 nmol/h/mg for hMBCOMT specific activity achieved at 20 h culture with 37 °C and 250 rpm. Subsequently, the efficiency for reconstitution of hMBCOMT is markedly null in the presence of ionic detergents, such as sodium dodecyl sulphate (SDS). In general, for non-ionic and zwiterionic detergents, until a detergent critic micellar concentration (CMC) of 1.0 mM, hMBCOMT shows more biological activity at lower detergent concentrations while for detergent CMC higher than 1 mM, higher detergent concentrations seem to be ideal for hMBCOMT solubilization. Indeed, from the detergents tested, the non-ionic digitonin at 0.5% (w/v) appears to be the most suitable for hMBCOMT solubilization.  相似文献   

2.
The formal first step in in vitamin A metabolism is the conversion of its natural precursor β,β-carotene (C40) to retinaldehyde (C20). This reaction is catalyzed by the enzyme β,β-carotene-15,15′-monooxygenase (BCMO1). BCMO1 has been cloned from several vertebrate species, including humans. However, knowledge about this protein’s enzymatic and structural properties is scant. Here we expressed human BCMO1 in Spodoptera frugiperda 9 insect cells. Recombinant BCMO1 is a soluble protein that displayed Michaelis–Menten kinetics with a KM of 14 μM for β,β-carotene. Though addition of detergents failed to increase BCMO1 enzymatic activity, short chain aliphatic detergents such as C8E4 and C8E6 decreased enzymatic activity probably by interacting with the substrate binding site. Thus we purified BCMO1 in the absence of detergent. Purified BCMO1 was a monomeric enzymatically active soluble protein that did not require cofactors and displayed a turnover rate of about 8 molecules of β,β-carotene per second. The aqueous solubility of BCMO1 was confirmed in mouse liver and mammalian cells. Establishment of a protocol that yields highly active homogenous BCMO1 is an important step towards clarifying the lipophilic substrate interaction, reaction mechanism and structure of this vitamin A forming enzyme.  相似文献   

3.
We assessed the interaction of three electrically neutral detergents (Triton X-100, C12EO8, and Tween 80) with P-glycoprotein (ABCB1, MDR1) and identified the molecular elements responsible for this interaction. To this purpose we titrated P-glycoprotein in inside-out plasma membrane vesicles of MDR1-transfected mouse embryo fibroblasts (NIH-MDR1-G185) with the detergents below their critical micelle concentration, CMC. The P-glycoprotein ATPase measured as a function of the detergent concentration yielded bell-shaped activity curves which were evaluated with a two-site binding model. The lipid-water partition coefficient and the transporter-water binding constant of the detergents were measured independently. Knowledge of these two parameters allowed assessment of the free energy of detergent binding to P-glycoprotein in the lipid membrane, ΔGtl0, that reflects the direct detergent-transporter affinity. It increased as the number of ethoxyl groups increased, suggesting that these hydrogen bond acceptor groups are the key elements for the detergent-transporter interaction in the lipid membrane. The free energy of binding to P-glycoprotein per ethoxyl group (EO) was determined as approximately ΔGEO0 = − 1.6 kJ/mol. The present findings moreover document that, depending on the concentration applied, detergents are intrinsic substrates for, or inhibitors of P-glycoprotein.  相似文献   

4.
The effect of non-ionic detergents on baclofen (GABAB-R agonist)-stimulated G-protein activity was measured as a [35S]GTPγS binding assay in the plasma membranes (PM) isolated from the brain tissue. The effect was clearly biphasic — a decrease in the activity was followed by an activation maximum and finally, at high concentrations, drastic inhibition of the G-protein activity was noticed. Contrarily, specific radioligand binding to GABAB-receptor was inhibited in the whole range of detergent concentrations step by step, i.e. it was strictly monophasic. The magnitude of both detergent effects was decreased in the same order of potency: Brij58 > Triton X-100 > Digitonin. The identical order was found when comparing detergents ability to alter fluorescence anisotropy of the membrane probe 1,6-diphenyl-1,3,5-hexatriene (rDPH) incorporated into the hydrophobic PM interior. Decrease of rDPH, in the order of Brij58 > Triton X-100 > Digitonin, was reflected as decrease of the S-order parameter and rotation correlation time ? paralleled by an increase of diffusion wobbling constant Dw (analysis by time-resolved fluorescence according to “wobble-in-cone” model). The influence of the detergents on the membrane organization at the polar headgroup region was characterized by Laurdan generalized polarization (GP). As before, the effect of detergents on GP parameters proceeded in the order: Brij58 > Triton X-100 > Digitonin.  相似文献   

5.
The correlation between membrane protein solubilisation and detergent aggregation in aqueous solution is studied for a series of n-alkyl-β-d-maltosides (CxG2 with x = 10, 11, 12 being the number of carbon atoms in the alkyl chain) using the trimeric photosystem I core complex (PSIcc) of oxygenic photosynthesis from Thermosynechococcus elongatus as model protein. While protein solubilisation is monitored via the turbidity of the solution, the aggregation behavior of the detergent is probed via the fluorescence spectrum of the polycyclic aromatic hydrocarbon pyrene. In addition, changes of the fluorescence spectrum of PSIcc in response to formation of the detergent belt surrounding its hydrophobic surface are investigated. Solubilisation of PSIcc and aggregation of detergent into micelles or belts are found to be strictly correlated. Both processes are complete at the critical solubilisation concentration (CSC) of the detergent, at which the belts are formed. The CSC depends on the concentration of the membrane protein, [prot], and is related to the critical micelle concentration (CMC) by the empirical law ln(CSC/CMC) = 0 [prot], where the constant 0 = (2.0 ± 0.3) μM−1 is independent of the alkyl chain length x. Formation of protein-free micelles below the CSC is not observed even for x = 10, where a significant excess of detergent is present at the CSC. This finding indicates an influence of PSIcc on micelle formation that is independent of the binding of detergent to the hydrophobic protein surface. The role of the CSC in the optimisation of membrane protein crystallisation is discussed.  相似文献   

6.
The gene bglU encoding a cold-adapted β-glucosidase (BglU) was cloned from Micrococcus antarcticus. Sequence analysis revealed that the bglU contained an open reading frame of 1419 bp and encoded a protein of 472 amino acid residues. Based on its putative catalytic domains, BglU was classified as a member of the glycosyl hydrolase family 1 (GH1). BglU possessed lower arginine content and Arg/(Arg + Lys) ratio than mesophilic GH1 β-glucosidases. Recombinant BglU was purified with Ni2+ affinity chromatography and subjected to enzymatic characterization. SDS-PAGE and native staining showed that it was a monomeric protein with an apparent molecular mass of 48 kDa. BglU was particularly thermolabile since its half-life time was only 30 min at 30 °C and it exhibited maximal activity at 25 °C and pH 6.5. Recombinant BglU could hydrolyze a wide range of aryl-β-glucosides and β-linked oligosaccharides with highest activity towards cellobiose and then p-nitrophenyl-β-d-glucopyranoside (pNPG). Under the optimal conditions with pNPG as substrate, the Km and kcat were 7 mmol/L and 7.85 × 103/s, respectively. This is the first report of cloning and characterization of a cold-adapted β-glucosidase belonging to GH1 from a psychrotolerant bacterium.  相似文献   

7.
We improved the enzymatic properties of the oxidatively stable alkaline serine protease KP-43 through protein engineering to make it more suitable for use in laundry detergents. To enhance proteolytic activity, the gene encoding KP-43 was mutagenized by error-prone PCR. Screening identified a Tyr195Cys mutant enzyme that exhibited increased specific activity toward casein between pH 7 and 11. At pH 10, the mutant displayed 1.3-fold higher specific activity for casein compared to the wild-type enzyme, but the activity of the mutant was essentially unchanged toward several synthetic peptides. Furthermore, the Tyr195Cys mutation significantly increased thermal stability and surfactant stability of the enzyme under oxidizing conditions. Examination of the crystal structure of KP-43 revealed that Tyr195 is a solvent exposed residue that forms part of a flexible loop that binds a Ca2 + ion. This residue lies 15–20 Å away from the residues comprising the catalytic triad of the enzyme. These results suggest that the substitution at position 195 does not alter the structure of the active center, but instead may affect a substrate–enzyme interaction. We propose that the Tyr195Cys mutation enhances the interaction with Ca2 + and affects the packing of the Ca2 + binding loop, consequently increasing protein stability. The simultaneously increased proteolytic activity, thermal stability, and surfactant stability of the Tyr195Cys mutant enzyme make the protein an ideal candidate for laundry detergent application.  相似文献   

8.
10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 μM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 μM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 μM, respectively. The critical micellar concentration (CMC) of ODPC was 200 μM. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (Tc) of 41.5 °C and an enthalpy (?H) variation of 7.3 kcal mol1. The presence of 25 μM ODPC decreased Tc and ?H to 39.3 °C and 4.7 kcal mol1, respectively. ODPC at 250 μM destabilized the liposomes (36.3 °C, 0.46 kcal mol1). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition.  相似文献   

9.
A new β-mannosidase gene, designated as man2S27, was cloned from Streptomyces sp. S27 using the colony PCR method and expressed in Escherichia coli BL21 (DE3). The full-length gene consists of 2499 bp and encodes 832 amino acids with a calculated molecular mass of 92.6 kDa. The amino acid sequence shares highest identity of 62.6% with the mannosidase Man2A from Cellulomonas fimi which belongs to the glycoside hydrolase family 2. Purified recombinant Man2S27 showed optimal activity at pH 7.0 and 50 °C. The specific activity, Km, and kcat values for p-nitrophenyl-β-d-mannopyranoside (p-NP-β-MP) were 35.3 U mg-1, 0.23 mM, and 305 s-1, respectively. Low transglycosylation activity was observed when Man2S27 was incubated with p-NP-β-MP (glycosyl donor) and methyl-α-d-mannopyranoside (p-NP-α-MP) (acceptor) at 50 °C and pH 7.0, and a small amount of methylmannobioside was synthesized. Using locust bean gum as the substrate, more reducing sugars were liberated by the synergistic action of Man2S27 and β-mannanase (Man5S27), and the synergy degree in sequential reactions with Man5S27 firstly and Man2S27 secondly was higher than that in the simultaneous reactions.  相似文献   

10.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   

11.
Recombinant β-galactosidase from Lactobacillus plantarum WCFS1, homologously over-expressed in L. plantarum, was purified to apparent homogeneity using p-aminobenzyl 1-thio-β-d-galactopyranoside affinity chromatography and subsequently characterized. The enzyme is a heterodimer of the LacLM-family type, consisting of a small subunit of 35 kDa and a large subunit of 72 kDa. The optimum pH for hydrolysis of its preferred substrates o-nitrophenyl-β-d-galactopyranoside (oNPG) and lactose is 7.5 and 7.0, and optimum temperature for these reactions is 55 and 60 °C, respectively. The enzyme is most stable in the pH range of 6.5-8.0. The Km, kcat and kcat/Km values for oNPG and lactose are 0.9 mM, 92 s−1, 130 mM−1 s−1 and 29 mM, 98 s−1, 3.3 mM−1 s−1, respectively. The L. plantarum β-galactosidase possesses a high transgalactosylation activity and was used for the synthesis of prebiotic galacto-oligosaccharides (GOS). The resulting GOS mixture was analyzed in detail, and major components were identified by using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) as well as capillary electrophoresis. The maximal GOS yield was 41% (w/w) of total sugars at 85% lactose conversion (600 mM initial lactose concentration). The enzyme showed a strong preference for the formation of β-(1→6) linkages in its transgalactosylation mode, while β-(1→3)-linked products were formed to a lesser extent, comprising ∼80% and 9%, respectively, of the newly formed glycosidic linkages in the oligosaccharide mixture at maximum GOS formation. The main individual products formed were β-d-Galp-(1→6)-d-Lac, accounting for 34% of total GOS, and β-d-Galp-(1→6)-d-Glc, making up 29% of total GOS.  相似文献   

12.
A comparison has been made of published techniques for the resolution of rat liver microsomal proteins by two-dimensional electrophoresis. The method of Kaderbhai and Freedman (Biochim. Biophys. Acta 601 (1980) 21-20) gives good resolution of acidic proteins but excludes hydrophobic integral membrane proteins of pI > 7, including cytochrome P-450 apoproteins. The method of Vlasuk and Walz (Anal. Biochem. 105 (1980) 112–120) gives good resolution of proetins of pI 5–8, including cytochromes P-450, but fails to resolve a major acidic protein of pI < 5. Isoelectric focusing of microsomal proteins is improved by the use of high concentrations of urea and low concentrations of sample proteins. Zwitterionic detergents of the general formula R·N+(CH3)2·CH2CH2CH2SO3? are effective in solubilizing microsomal proteins, either alone or in presence of non-ionic detergent; compounds with a long alkyl chain (C14 or C16) are most effective. Isoelectric focusing of microsomal proteins solubilized by zwitterionic detergents did not give good resolution, probably because of incomplete dissociation and denaturation of the proteins. These detergents could not be used in the presence of high concentrations of urea. Although no single method of two-dimensional electrophoresis gives complete resolution of the whole range of microsomal proteins, conditions can be optimized for specific sets of proteins of interest. The technique can be used to monitor differences in microsomal composition between rat strains, or following induction, and for a variety of other studies.  相似文献   

13.
We demonstrate the inhibition of the native phosphatase activity of a cold active alkaline phosphatase from Vibrio (VAP) (IC50 of 44 ± 4 (n = 4) μM at pH 7.0 after a 30 min preincubation) by a specific β-lactam compound (only by imipenem, and not by ertapenem, meropenem, ampicillin or penicillin G). The homologous scaffold was detected by an in silico analysis that established the spatial and electrostatic congruence of the active site of a Class B2 CphA metallo-β-lactamase from Aeromonas hydrophila to the active site of VAP. The tested β-lactam compounds did not inhibit Escherichia coli or shrimp alkaline phosphatase, which could be ascribed to the lower congruence indicated by CLASP. There was no discernible β-lactamase activity in the tested alkaline phosphatases. This is the first time a scaffold recognizing imipenem in an alkaline phosphatase (VAP) has been demonstrated.  相似文献   

14.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

15.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

16.
Trichoderma asperellum produces two extracellular 1,3-β-d-glucanase upon induction with cell walls from Rhizoctonia solani. A minor 1,3-β-d-glucanase was purified to homogeneity by ion exchange chromatography on Q-Sepharose and gel filtration on Sephacryl S-100. A typical procedure provided 13.8-fold purification with 70% yield. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 27 kDa. The enzyme exhibited optimum catalytic activity at pH 3.6 and 45 °C. It was thermostable at 40 °C, and retained 75% activity after 60 min at 45 °C. The Km and Vmax values for 1,3-β-d-glucanase, using laminarin as substrate, were 0.323 mg ml−1 and 0.315 U min−1, respectively. The enzyme was strongly inhibited by Hg2+ and SDS. The enzyme was only active toward glucans containing β-1,3-linkages. Peptide sequences showed similarity with two endo-1,3(4)-β-d-glucanases from Aspergillus fumigatus Af293when compared against GenBank non-redundant database.  相似文献   

17.
18.
Quassia amara L. (Family Simaroubaceae) is known to have several medicinal properties including the activity against malaria. An HPLC method was employed for purification of the biologically active quassinoids; quassin (Q) and neo-quassin (NQ), further characterized by MALDI-TOF analyses. Purified Q, NQ and the crude bark extract (S1) along with artesunate (AS) were studied for their in vitro anti-plasmodial activity. The in vivo toxicity studies at intraperitoneal doses with higher concentrations of the crude bark extract (S1) in Balb/C mice ruled out the apprehension of toxicity. Interaction studies between the test compounds among themselves (Q + NQ) and individually with artesunate (AS + Q, AS + NQ), were carried out in vitro at four ratios (1:5, 1:2, 2:1 and 5:1) on chloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum. The crude bark extracts of Q. amara exhibited higher P. falciparum inhibitory activity (IC50 = 0.0025 μg/ml) as compared to that of the isolated compounds, quassin (IC50 = 0.06 μg/ml, 0.15 μM), neo-quassin (IC50 = 0.04 μg/ml, 0.1 μM) and also to the positive control, artesunate (IC50 = 0.02 μg/ml, 0.05 μM). The in vitro drug interaction study revealed the compounds, quassin and neo-quassin to be additive to each other. At lower ratios, artesunate was found to be a potential combination partner with both the compounds. It was interesting to note that none of the combinations exhibited antagonistic interactions. This phenomenon offers the opportunity for further exploration of novel therapeutic concentrations and combinations.  相似文献   

19.
A receptor affinity chromatographic selection method was developed for screening the bioactive compounds binding to β2-adrenoceptor (β2-AR) in Coptidis rhizome. The bioactive compounds were analyzed by molecular recognition with a β2-AR affinity column. The retention compounds eluted from the β2-AR column were separated online with reverse-phase high-performance liquid chromatography by column switching technology, and identified by a coupled ion-trap mass spectrometer. Four compounds were screened as the bioactive compounds of Coptidis rhizome and identified as 2,9,10-trimethoxy-3-hydroxyl-protoberberine (jateorhizine), 2,3-methylenedioxy-9-methoxy-protoberberine, 2,3,9,10-tetramethoxy-protoberberine (palmatine) and 2,3-methylenedioxy-9,10-dimethoxy-protoberberine (berberine). The association constants of jatrorrhizine, palmatine and berberine to the β2-AR were determined by the zonal elution method with standards. Berberine and palmatine had only one type of binding site on the immobilized β2-AR. Their association constants were (2.28 ± 0.11) × 104/M and (3.00 ± 0.10) × 104/M, respectively. Jatrorrhizine had at least two type of binding sites on the immobilized β2-AR, and the corresponding association constants were (2.20 ± 0.09) × 10−4/M and (6.78 ± 0.001) × 105/M.  相似文献   

20.
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the β-lactamase II from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K1/K2 ≥ 5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K2 < 80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its α-helical content, presumably associated with enhanced flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号