首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexually dimorphic glands often release sexual pheromones both in vertebrates and invertebrates. Species of Laniatores (Arachnida, Opiliones) seem to depend on chemical communication but few studies have addressed this topic. In this study, we review the literature for the Phalangida and present new data for 23 species of Laniatores. In 16 taxa, we found previously undescribed sexually dimorphic glandular openings on the femur, patella, metatarsus, and tarsus of legs I and metatarsus of legs III and IV. For the other species, we provide scanning electron micrographs of previously undescribed sexually dimorphic setae and pegs located on swollen regions of the legs. We also list additional species in which males have swollen regions on the legs, including the tibia, metatarsus, and tarsus of legs I, trochanter and tibia of legs II, femur, metatarsus, and tarsus of legs III, and metatarsus and tarsus of legs IV. The function and biological role of the secretions released by these glands are discussed. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
In at least four closely related families of the diverse harvestmen lineage Gonyleptoidea, males may possess sexually dimorphic tarsal glands in the swollen tarsomeres of the basitarsus and/or metatarsus of leg I. The first histological and ultrastructural examination of the sexually dimorphic tarsal glands in leg I focused only on Manaosbiidae. In this study, we examine the morphology and ultrastructure of the sexually dimorphic glands, and their associated glandular openings, found in the basitarsus and/or metatarsus of leg I of males representing Cosmetidae, Gonyleptidae, and Cranaidae (glandular openings only). In cosmetids and gonyleptids, the tarsal glands are made up of 20–60 glandular units that form distinct groups within the prolateral and retrolateral half of the tarsomere. Each glandular unit consists of a pair of terminal secretory cells, an intercalary cell wrapped around the receiving canal, and a canal cell tightly wrapped around the length of the conducting canal. Cosmetidae, Gonyleptidae, and Cranaidae exhibit remarkably similar tarsal glands and gland openings although the location of the glands in the leg differs slightly among them. Males of these three families exhibit markedly different glands and glandular openings compared to males of the family Manaosbiidae. The sexually dimorphic tarsal glands may provide an important morphological character for determining phylogenetic relationships among gonyleptoid families. Finally, we provide morphological and ultrastructural data for the common tegumental glands. These data indicate that the sexually dimorphic tarsal glands are strikingly similar to, and may possibly be derived from, the tegumental glands. J. Morphol. 274:1203–1215, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Secondary sexual traits in males can extend to glandular structures that play a role during courtship and mating. In dwarf spiders (Linyphiidae, Erigoninae), glandular secondary sexual traits are particularly common. Males are characterized by cephalic modifications which produce secretions that females contact with their mouthparts during courtship and/or copulation. We used the dwarf spider Oedothorax retusus as a model species to investigate if and when the contents of the glands are released during a mating sequence and if so, if the gland reservoirs are refilled after mating. To this aim, we quantitatively compared the glandular tissue on the ultrastructural level between a) inexperienced males, b) males that performed courtship, c) males immediately after copulation, and d) males three days after mating. We assessed whether the treatment groups differed in the filling state of the conducting canals and receiving canals (reservoir regions) of the glandular units. Our study shows that courting males as well as males three days after mating did not differ significantly from control (inexperienced) males in the presence of secretions. However, males exhibited significantly less secretion immediately after mating. This strongly suggests that the main function of the secretions is gustatorial courtship and not the emission of volatile pheromones for mate attraction as was previously assumed.  相似文献   

4.
Pheromone glands were discovered in the prothorax of male Hylotrupes bajulus (L.) (Coleoptera : Cerambycidae). These exocrine glands were investigated by SEM and light microscopy. Almost the entire prothorax is internally lined with a glandular matrix composed of numerous heap-like complex glands. Each gland is divided into several subunits (“pore field units”), which in turn are composed of a varying number of glandular units. The glandular unit comprises a distal voluminous glandular cell, a medial (intercalary) canal cell I, and a minute canal cell II near the cuticle. The spindle-like, basally constricted receiving canal of the gland cell leads into the long, non-porous conducting canal, which, by a single cuticle canal, opens in an external pore field, an aggregate of orifices of other such cuticle canals. In varying numbers, these randomly arranged pore fields are located in superficial pits that are distributed over nearly the entire prothorax. The structure of these male sex pheromone glands is discussed in comparison with other known glands in species of Coleoptera characterized by multicellular aggregations and by pore plates.  相似文献   

5.
Social insects have numerous exocrine glands, but these organs are understudied in termites compared to hymenopterans. The tarsomere and distal tibial glands of the termites Heterotermes tenuis, Coptotermes gestroi and Silvestritermes euamignathus were investigated by scanning and transmission electron microscopy. Pore plates are visible in scanning micrographs on the distal tibial surfaces and on the ventral surface of the first and second tarsomeres of workers of H. tenuis and C. gestroi. In contrast, workers of S. euamignathus have isolated pores spread throughout the ventral surfaces of the first, second, and third tarsomeres and the distal tibia. In all three species each pore corresponds to the opening of a class-3 secretory unit, composed of one secretory and one canal cell. Clusters of class-3 glandular cells are arranged side by side underneath the cuticle. The main characteristics of these exocrine glands include their presence on all the legs and the electron-lucent secretion in the secretory cells. Possible functions of these glands are discussed.  相似文献   

6.
To allow an animal to behave appropriately, the location of sensorial structures is expected to be related to their function. As the different leg pairs of arachnids may have different functions (probing x supporting the body), one could expect them to have a different density of sensilla. Moreover, different regions of the same leg (dorsal, lateral, and ventral) would also be expected to have different densities of sensilla, according to the use of each region (e.g., the ventral part is often in contact with the substrate while the dorsal part is not). As cavernicolous animals are expected to be more sensitive than their epigean relatives, one could also expect a different density of sensilla when comparing cavernicolous and epigean animals. Using three epigean and three cavernicolous species of harvestmen (Arachnida, Opiliones), this study aimed at describing the morphology of hair sensilla on the legs and answering three questions: (1) Are there differences in the density of hair sensilla between the dorsal, lateral and ventral regions of each leg pair of the same individual? (2) Are there differences in the density of hair sensilla between the leg pairs of the same individual? (3) Are there differences in the density of hair sensilla when comparing the leg pairs of individuals of cavernicolous and non-cavernicolous species? The tarsi and metatarsi of all right legs of the six studied species were analyzed under a scanning electron microscope. The results (P < 0.05) showed that, in general: the ventral region of the tarsus was denser in sensilla trichodea than the lateral and dorsal regions, particularly on legs I and II; the density of sensilla chaetica did not differ on legs III and IV, but was greater on the dorsal region of legs I and II; the ventral part of legs I had the higher density of sensilla trichodea of the four pairs, whereas the second pair had the lower density; Holcobunus citrinus (Eupnoi) was the species with higher density of sensilla trichodea, on all legs; the cavernicolous species had a lower density of sensilla than the epigean species. The results are tentatively related to harvestmen behavior.  相似文献   

7.
Males of a solitary digger wasp, the European beewolf, Philanthus triangulum, possess large mandibular glands that have been reported to produce a scent marking pheromone. We analysed the morphology and ultrastructure of these glands using light microscopy as well as scanning and transmission electron microscopy. The paired glands are located laterally in the head and each side consists of a larger and a smaller part. Both parts possess a collecting duct each with distinct openings at the mandible base. However, the collecting duct of the larger part is additionally connected to the pharynx through a lateral extension. The collecting ducts are bordered by a monolayered epithelium lined with cuticle that exhibits conspicuous ramified protuberances. About 1400 acini consisting of class 3 gland cells surround the ducts and are connected to them through conducting canals. The main components in the cytoplasm of these gland cells are mitochondria, well-developed smooth endoplasmatic reticulum, and electron lucent vesicles suggesting a high secretory activity. The connection between the large gland parts and the pharynx suggests that the secretion of the mandibular glands might not only be delivered directly onto the mandibles but might also be transported to and stored in the postpharyngeal gland.  相似文献   

8.
This study brings a survey of the exocrine glands in the legs of Vespula vulgaris wasps. We studied workers, males, virgin queens as well as mated queens. A variety of 17 glands is found in the different leg segments. Among these, five glands are novel exocrine structures for social insects (trochanter-femur gland, ventrodistal tibial gland, distal tibial sac gland, ventral tibial gland, and ventral tarsomere gland). Most leg glands are present in the three leg pairs of all castes. This may indicate a mechanical function. This is likely for the numerous glands that occur near the articulation between the various leg segments, where lubricant production may be expected. Other possible functions include antenna cleaning, acting as a hydraulic system, or pheromonal. Further research including leg-related behavioural observations and chemical analyses may help to clarify the functions of these glandular structures in the legs.  相似文献   

9.
Many plants possess specialized structures that are involved in the production and secretion of specific low molecular weight compounds and proteins. These structures are almost always localized on plant surfaces. Among them are nectaries or glandular trichomes. The secreted compounds are often employed in interactions with the biotic environment, for example as attractants for pollinators or deterrents against herbivores.Glands that are unique in several aspects can be found in carnivorous plants. In so-called pitcher plants of the genus Nepenthes, bifunctional glands inside the pitfall-trap on the one hand secrete the digestive fluid, including all enzymes necessary for prey digestion, and on the other hand take-up the released nutrients. Thus, these glands represent an ideal, specialized tissue predestinated to study the underlying molecular, biochemical, and physiological mechanisms of protein secretion and nutrient uptake in plants. Moreover, generally the biosynthesis of secondary compounds produced by many plants equipped with glandular structures could be investigated directly in glands.In order to work on such specialized structures, they need to be isolated efficiently, fast, metabolically active, and without contamination with other tissues. Therefore, a mechanical micropreparation technique was developed and applied for studies on Nepenthes digestion fluid. Here, a protocol is presented that was used to successfully prepare single bifunctional glands from Nepenthes traps, based on a mechanized microsampling platform. The glands could be isolated and directly used further for gene expression analysis by PCR techniques after preparation of RNA.  相似文献   

10.
Diabrotica speciosa (Germar) and Diabrotica viridula F. (Coleoptera: Chrysomelidae) are the two most abundant species of the genus in South America, and belong to the fucata and virgifera groups, respectively. Here, we characterize the dimorphism of the setae present on the basitarsi of males and females of these species. Dimorphism was confirmed in both species, and it was related to the presence of adhesive setae exclusively in males, which possess these structures on the basal tarsomeres of the pro- and mesothoracic legs.  相似文献   

11.

Background

Amphibian defence against predators and microorganisms is directly related to cutaneous glands that produce a huge number of different toxins. These glands are distributed throughout the body but can form accumulations in specific regions. When grouped in low numbers, poison glands form structures similar to warts, quite common in the dorsal skin of bufonids (toads). When accumulated in large numbers, the glands constitute protuberant structures known as macroglands, among which the parotoids are the most common ones. This work aimed at the morphological and biochemical characterization of the poison glands composing different glandular accumulations in four species of toads belonging to group Rhinella marina (R. icterica, R. marina, R. schneideri and R. jimi). These species constitute a good model since they possess other glandular accumulations together with the dorsal warts and the parotoids and inhabit environments with different degrees of water availability.

Results

We have observed that the toads skin has three types of poison glands that can be differentiated from each other through the morphology and the chemical content of their secretion product. The distribution of these different glands throughout the body is peculiar to each toad species, except for the parotoids and the other macroglands, which are composed of an exclusive gland type that is usually different from that composing the dorsal warts. Each type of poison gland presents histochemical and biochemical peculiarities, mainly regarding protein components.

Conclusions

The distribution, morphology and chemical composition of the different types of poison glands, indicate that they may have different defensive functions in each toad species.
  相似文献   

12.
The accessory reproductive glands of the adult male Hyalophora cecropia contain S-adenosylmethionine:juvenile hormone acid methyltransferase. The enzyme is soluble and can be found in the gland epithelium as well as in the glandular secretion, but not in any other part of the genital tract of the unmated male. The appearance of this enzyme activity in the pharate adult precedes the formation of a measurable pool of its substrate, juvenile hormone acid, and the onset of the juvenile hormone accumulation in the accessory reproductive glands. The accessory reproductive glands of Antherea pernyi and Manduca sexta, species which do not accumulate juvenile hormone, lack methyltransferase activity. It is concluded that the methyltransferase is an essential component of the juvenile hormone accumulation mechanism in H. cecropia.  相似文献   

13.
Xanthanolides, as the sesquiterpene lactones, are reportedly the major components for the pharmacological properties of X. strumarium L. species. Phytochemical studies indicated that the glandular structures on the surface of plant tissues would form the primary sites for the accumulation of this class of the compounds. As the interface between plants and their natural enemies, glandular trichomes may vary with respect to which of their chemicals are sequestered against different herbivores in different ecologies. However, to date, no data are available on the chemical characterisation of X. strumarium glandular cells. In this study, the trichome secretions of the X. strumarium species originating from nineteen unique areas across eleven provinces in China, were analysed by HPLC, LC-ESI-MS and NMR. For the first time three distinct chemotypes of X. strumarium glandular trichomes were discovered along with the qualitative and quantitative evaluations of their presence of xanthanolides; these were designated glandular cell Types I, II, and III, respectively. The main xanthanolides in Type I cells were 8-epi-xanthatin and xanthumin while no xanthatin was detected. Xanthatin, 8-epi-xanthatin, and xanthumin dominated in Type II cells with comparable levels of each being present. For Type III cells, significantly higher concentrations of 8-epi-xanthatin or xanthinosin (relative to xanthatin) were detected with xanthinosin only being observed in this type. Further research will focus on understanding the ecological and molecular mechanism causing these chemotype differences in X. strumarium glandular structures.  相似文献   

14.
Larvae of the chrysomelid taxon Galerucinae, Sermylini, are known to release a fluid from dorsolateral segmental openings when disturbed. The release of this fluid resembles the discharge of secretion from well-studied exocrine defensive glands in larvae of Chrysomelinae, the putative sister group of Galerucinae. Thus, Sermylini larvae have been named “glanduliferous” ones. However, no comparative analyses of the internal structures of the segmental openings in Sermylini larvae have been available prior to this study. Therefore, segmental larval openings in 10 Sermylini species were investigated by scanning and light microscopy. Two types of segmental openings were detected: (1) the opening is visible as an integumental slit which can be opened and closed by muscles. No specific glandular structures are associated with this slit. (2) The opening is covered internally by a cuticular sac which can be everted to the outside. A cuticular duct of a gland is leading into this sac. Haemolymph is discharged from both types of openings. These structures are discussed with respect to reflex bleeding in other taxa. Furthermore, a common origin of the segmental openings in larvae of Sermylini and the segmental exocrine glands in chrysomeline larvae is critically questioned.  相似文献   

15.
In the molluscan class Solenogastres, different types of foregut glands vary in number, structure, and location within the foregut. The present article describes their anatomy and cytology and intends to clarify their confused terminology. Pharyngeal glands, esophageal glands, and the more complex dorsal and ventrolateral foregut glands can be distinguished. The ventrolateral foregut glands (ventral foregut glandular organs, ventral salivary glands of auct.), in the literature subdivided previously into four types, are revisited here in the context of current vertebrate gland terminology. The results of recent investigations are added to earlier ones, and a classification system for these multicellular glands is proposed. This system is based on cytological characters of glandular cells (intra- or extraepithelial), characters of the associated musculature (inner or outer musculature), location of the gland relative to the pharynx epithelium (endoepithelial or exoepithelial), characters of the gland openings (paired or unpaired), morphology of the gland duct (simple or branched), and some additional features like the arrangement of glandular cells along the gland ducts. Gross morphology and anatomy of ventrolateral foregut glands constitute useful taxonomic characters in determining higher taxa (family level), and finer details of the anatomy and cytology are useful in determining lower levels (genus and species). Possible pathways for the evolution of the different gland types of Solenogastres in relation to foregut glands present in the other molluscan clades are presented. The importance of ventrolateral foregut gland characters for phylogenetic considerations within the Solenogastres is discussed.  相似文献   

16.
Mites are a diverse and important component in the soils of the Southern Ocean islands, but for many groups, their taxonomy and biogeography is little studied. This paper reports the Algophagidae, a poorly known family, from the New Zealand region for the first time. The study used soil samples from seabird burrows, brackish algal wrack samples and a museum collection to recover specimens. Terraphagus antipodus gen. n., sp. n. is described from grey petrel Procellaria cinerea burrow soil on the Antipodes Islands, New Zealand. The axillary organ is confined to the dorsum; the epigynal apodeme ends are fused with the ends of coxal apodeme II; seta 2a and ω2 are absent, and the famulus is bilobed. Males have the sternum fused to coxal apodemes II; the tarsal setae of legs I, III and IV of the male are modified for mate guarding. The short stout legs I and II end in huge spines in females as e, d, q, s, wa and hT. From brackish algal wrack, Lake Forsyth/Wairewa, Canterbury, New Zealand, another algophagid Neohyadesia minor sp. n. is described and illustrated. The new species is the smallest known algophagid. A neohyadesid collected in 1961 is newly reported here from Eudyptes sp. penguin rookery mud from North Head, Macquarie Island. These records further extend the known microhabitats of the family to the allochthonous marine seabird nutrient flow into islands in the New Zealand region and make Neohyadesia Hughes and Goodman, 1969 present in all Southern Ocean provinces.  相似文献   

17.
《Zoologischer Anzeiger》2014,253(1):66-82
Hatching of embryos from their eggs involves either mechanical and/or chemical support. In particular enzymes are widely used in the animal kingdom to weaken the egg layers and facilitate the embryo's escape. Although numerous morphological and biochemical studies exist on the hatching glands of invertebrates (such as sea urchins, ascidians, insects) and vertebrates (teleosts, amphibians, and mammals), little is known about the morphology of the hatching glands (Hoyle organs) in cephalopod hatchlings.In this study, the internal gland structure and the external appearance of the Hoyle organ are compared among several cephalopod species (Idiosepius pygmaeus; Euprymna scolopes; Sepia officinalis; Loligo gahi; Sepioteuthis lessoniana; Architeuthis sp.; Octopus vulgaris; Tremoctopus gracilis; Argonauta hians). In almost all cases the glandular system is restricted to the posterior part of the dorsal mantle surface. Only Octopus and Argonauta lack a specific glandular structure in this body region and the animals apparently use other mechanisms to penetrate the egg layers.In all decapod species (Idiosepius; Euprymna; Sepia; Loligo; Sepioteuthis; Architeuthis) as well as in Tremoctopus only one specific cell type is present in the Hoyle organ, which synthesizes granular material. The secretory droplets are more or less uniform in electron density in Idiosepius, Euprymna and Tremoctopus but exhibit translucent inclusions in the other decapods. The time of gland development, first synthesis of secretory products and later degeneration after hatching vary between the species.The present study contributes to our knowledge of glandular systems in cephalopods and allows comparison with hatching structures in other invertebrates and vertebrates.  相似文献   

18.
The fine structure of the cerebral glands (cephalic neurohaemal organs) was investigated in the scolopendromorphs, Scolopendra sp. and Cryptops sp. (Myriapoda Scolopendromorpha). As in other Chilopoda, these organs are composed of glandular cells and axons, originating from the brain. Differences between the 2 genera studied concern: (i) The general structure (axons and glandular cells are mixed in Scolopendra and separated in Cryptops). (ii) The different cell types (I type of glial cell and 2 of glandular cells in Scolopendra while respectively 2 and 3 are persent in Cryptops. Fruthermore, this last genus has a less-developed Golgi apparatus and shows in one of the glandular cell types an intranuclear vacuole, sometimes related to a dilated perinuclear space. Physiological significance of such a structure remains unknown). (iii) The number of axonal types (less numerous in Scolopendra than in Cryptops). The 2 genera show little exocytosis profiles, both in axons and in glandular cells.  相似文献   

19.
The role of species-specific genitalia in reproductive isolation is unclear. Males of the millipede genus Parafontaria use gonopods (modified eighth legs) charged with sperm from the genital openings of the second legs as intromittent organs. Males perform both preliminary and true intromission during mating. During preliminary intromission, a male attempts to insert his gonopods into the female genitalia before charging the gonopods with sperm. If this intromission is completed, it is followed by the ejaculation of sperm to the gonopods and true intromission for insemination. In two sympatric species of Parafontaria that lack effective precopulatory isolation, copulation was terminated without insemination because of preliminary intromission failure caused by mismatched genital and body sizes. Thus, mechanical isolation between these sympatric species resulted from morphological differentiation mediated by the obligatory preliminary intromission. These findings demonstrate the proximate importance of genital and body size differences for reproductive isolation within this genus of millipede.  相似文献   

20.
The primary monoterpene accumulated in the glandular trichomes of spearmint (Mentha spicata) is the ketone (−)-carvone which is formed by cyclization of the C10 isoprenoid intermediate geranyl pyrophosphate to the olefin (−)-limonene, hydroxylation to (−)-trans-carveol and subsequent dehydrogenation. Selective extraction of the contents of the glandular trichomes indicated that essentially all of the cyclase and hydroxylase activities resided in these structures, whereas only about 30% of the carveol dehydrogenase was located here with the remainder located in the rest of the leaf. This distribution of carveol dehydrogenase activity was confirmed by histochemical methods. Electrophoretic analysis of the partially purified carveol dehydrogenase from extracts of both the glands and the leaves following gland removal indicated the presence of a unique carveol dehydrogenase species in the glandular trichomes, suggesting that the other dehydrogenase found throughout the leaf probably utilizes carveol only as an adventitious substrate. These results demonstrate that carvone biosynthesis takes place exclusively in the glandular trichomes in which this natural product accumulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号