首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The determination of protein–protein interfaces is of crucial importance to understand protein function and to guide the design of compounds. To identify protein–protein interface by NMR spectroscopy, 13C NMR paramagnetic shifts induced by freely diffusing 4-hydroxy-2, 2, 6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) are promising, because TEMPOL affects distinct 13C NMR chemical shifts of the solvent accessible nuclei belonging to proteins of interest, while 13C nuclei within the interior of the proteins may be distinguished by a lack of such shifts.

Method

We measured the 13C NMR paramagnetic shifts induced by TEMPOL by recording 13C–13C TOCSY spectra for ubiquitin in the free state and the complex state with yeast ubiquitin hydrolase1 (YUH1).

Results

Upon complexation of ubiquitin with YUH1, 13C NMR paramagnetic shifts associated with the protein binding interface were reduced by 0.05 ppm or more. The identified interfacial atoms agreed with the prior X-ray crystallographic data.

Conclusions

The TEMPOL-induced 13C chemical shift perturbation is useful to determine precise protein–protein interfaces.

General significance

The present method is a useful method to determine protein–protein interface by NMR, because it has advantages in easy sample preparations, simple data analyses, and wide applicabilities.  相似文献   

2.
Understanding how proteins are approached by surrounding molecules is fundamental to increase our knowledge of life at atomic resolution. Here, the surface accessibility of a multifunctional small protein, the archaeal protein Sso7d from Sulfolobus solfataricus, has been investigated by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes. The DNA binding domain of Sso7d appears very accessible both to TEMPOL and Gd(III)(DTPA-BMA). Differences in paramagnetic attenuation profiles of (1)H-(15)N HSQC protein backbone amide correlations, observed in the presence of the latter paramagnetic probes, are consistent with the hydrogen bond acceptor capability of the N-oxyl moiety of TEMPOL to surface exposed Sso7d amide groups. By using the gadolinium complex as a paramagnetic probe a better agreement between Sso7d structural features and attenuation profile is achieved. It is interesting to note that the protein P-loop region, in spite of the high surface exposure predicted by the available protein structures, is not approached by TEMPOL and only partially by Gd(III)(DTPA-BMA).  相似文献   

3.
Protein–protein interactions (PPI) are crucial for the establishment of life. However, its basic principles are still elusive and the recognition process is yet to be understood. It is important to look at the biomolecular structural space as a whole, in order to understand the principles behind conformation–function relationships. Since the application of an alanine scanning mutagenesis (ASM) study to the growth hormone it was demonstrated that only a small subset of residues at a protein–protein interface is essential for binding — the hot-spots (HS). Aromatic residues are some of the most typical HS at a protein–protein interface. To investigate the structural role of the interfacial aromatic residues in protein–protein interactions, we performed Molecular Dynamic (MD) simulations of protein–protein complexes in a water environment and calculated a variety of physical–chemical characteristics. ASM studies of single residues and of dimers or high-order clusters were performed to check for cooperativity within aromatic residues. Major differences were found between the behavior of non-HS aromatic residues and HS aromatic residues that can be used to design drugs to block the critical interactions or to predict major interactions at protein–protein complexes.  相似文献   

4.
Molecular dynamics (MD) simulations were used to investigate the binding of four ligands to the Val122Ile mutant of the protein transthyretin. Dissociation, misfolding, and subsequent aggregation of mutated transthyretin proteins are associated with the disease Familial Amyloidal Cardiomyopathy. The ligands investigated were the drug candidate AG10 and its decarboxy and N-methyl derivatives along with the drug tafamidis. These ligands bound to the receptor in two halogen binding pockets (HBP) designated AB and A’B’. Inter-ligand distances, solvent accessible surface areas, root mean squared deviation measurements, and extracted structures showed very little change in the AG10 ligands' conformations or locations within the HBP during the MD simulation. In addition, the AG10 ligands experienced stable, two-point interactions with the protein by forming hydrogen bonds with Ser-117 residues in both the AB and A’B’ binding pockets and Lysine-15 residues found near the surface of the receptor. Distance measurements showed these H-bonds formed simultaneously during the MD simulation. Removal of the AG10 carboxylate functional group to form decarboxy-AG10 disrupted this two-point interaction causing the ligand in the AB pocket to undergo a conformational change during the MD simulation. Likewise, addition of a methyl group to the AG10 hydrazone functional group also disrupted the two-point interaction by decreasing hydrogen bonding interactions with the receptor. Finally, MD simulations showed that the tafamidis ligands experienced fewer hydrogen bonding interactions than AG10 with the protein receptor. The tafamidis ligand in pocket A’B’ was also found to move deeper into the HBP during the MD simulation.  相似文献   

5.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein–ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

6.
The function of a protein is often fulfilled via molecular interactions on its surfaces, so identifying the functional surface(s) of a protein is helpful for understanding its function. Here, we introduce the concept of a split pocket, which is a pocket that is split by a cognate ligand. We use a geometric approach that is site‐specific. Specifically, we first compute a set of all pockets in the protein with its ligand(s) and a set of all pockets with the ligand(s) removed and then compare the two sets of pockets to identify the split pocket(s) of the protein. To reduce the search space and expedite the process of surface partitioning, we design probe radii according to the physicochemical textures of molecules. Our method achieves a success rate of 96% on a benchmark test set. We conduct a large‐scale computation to identify ~19,000 split pockets from 11,328 structures (1.16 million potential pockets); for each pocket, we obtain residue composition, solvent‐accessible area, and molecular volume. With this database of split pockets, our method can be used to predict the functional surfaces of unbound structures. Indeed, the functional surface of an unbound protein may often be found from its similarity to remotely related bound forms that belong to distinct folds. Finally, we apply our method to identify glucose‐binding proteins, including unbound structures. Our study demonstrates the power of geometric and evolutionary matching for studying protein functional evolution and provides a framework for classifying protein functions by local spatial patterns of functional surfaces. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et al., 1996, Science 274:1531-1534), indicates that CAST pocket computation may provide a priori identification of target proteins for linked-fragment design. CAST analysis of 30 HIV-1 protease-inhibitor complexes shows that the flexible active site pocket can vary over a range of 853-1,566 A3, and that there are two pockets near or adjoining the active site that may be recruited for ligand design.  相似文献   

8.
Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of [1H]13C and [1H]15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the [1H]13C heteronuclear NOE in combination with 13C-R 1 can yield a more accurate analysis of side chain motional parameters. The observation of significant [1H]15N heteronuclear NOEs for certain backbone amides, as well as for specific asparagine/glutamine sidechain amides is consistent with MD simulations. The measurement of site-specific heteronuclear NOEs is enabled by the use of highly deuterated microcrystalline protein samples in which spin diffusion is reduced in comparison to protonated samples.  相似文献   

9.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein-ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

10.
We recently reported that CXCL14 binds to CXCR4 with high affinity and inhibits CXCL12-mediated chemotaxis. Here we found that the C-terminal 51–77 amino acid residues of CXCL14 are responsible for CXCR4 binding. A disulfide dimer peptide of CXCL14(51–77) bound to CXCR4 with comparable affinity to full length CXCL14, and exhibited CXCL12 inhibitor activity. CXCR4 was efficiently internalized upon binding of dimeric CXCL14(51–77), thereby being reduced on the cell surface. Substitution of 5 amino acid residues in combination with the use of an oxime linker for dimerization increased the solubility and chemical stability of the dimeric CXCL14(51–77).  相似文献   

11.
Identifying hot-spot residues – residues that are critical to protein–protein binding – can help to elucidate a protein’s function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein–protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36–57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein–protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins.  相似文献   

12.
Abstract

Aspects of T4 lysozyme dynamics and solvent interaction are investigated using atomically detailed Molecular Dynamics (MD) simulations. Two spin-labeled mutants of T4 lysozyme are analyzed (T4L-N40C and T4L-K48C), which have been found from electronic paramagnetic resonance (EPR) experiments to exhibit different mobilities at the site of spin probe attachment (N- and C-terminus of helix B, respectively). Similarities and differences in solvent distribution and diffusion around the spin label, as well as around exposed and buried residues within the protein, are discussed. The purpose is to capture possible strong interactions between the spin label (ring) and solvent molecules, which may affect EPR lineshapes. The effect of backbone motions on the water density profiles is also investigated. The focus is on the domain closure associated with the T4 lysozyme hinge-bending motion, which is analyzed by Essential Dynamics (ED). The N-terminus of helix B is found to be a “hinge” residue, which explains the high degree of flexibility and motional freedom at this site.  相似文献   

13.
TEMPOL, the soluble spin-label 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, has been used to determine the surface characteristics of tendamistat, a small protein with a well-characterised structure both in solution and in the crystal. A good correlation has been found between predicted regions of exposed protein surface and the intensity attenuations induced by the probe on 2D NMR TOCSY cross peaks of tendamistat in the paramagnetic water solution. All the high paramagnetic effects have been interpreted in terms of more efficient competition of TEMPOL with water molecules at some surface positions. The active site of tendamistat coincides with the largest surface patch accessible to the probe. A strong hydration of protein N and C termini can also be suggested by this structural approach, as these locations exhibit reduced paramagnetic perturbations. Provided that the solution structure is known, the use of this paramagnetic probe seems to be well suited to delineate the dynamic behaviour of the protein surface and, more generally, to gain relevant information about the molecular presentation processes.  相似文献   

14.
Paramagnetic probes, whose approach to proteins can be monitored by nuclear magnetic resonance (NMR) studies, have been found of primary relevance for investigating protein surfaces accessibility. Here, paramagnetic probes are also suggested for a systematic investigation on protein aggregation. Bovine pancreatic trypsin inhibitor (BPTI) was used as a model system for aggregation by analyzing its interaction with TEMPOL and Gd(III)DTPA-BMA. Some of the measured paramagnetic relaxation rates of BPTI protons exhibited a reverse dependence on protein concentration, which can be attributed to the formation of transient BPTI aggregates.  相似文献   

15.
16.
Aspects of T4 lysozyme dynamics and solvent interaction are investigated using atomically detailed Molecular Dynamics (MD) simulations. Two spin-labeled mutants of T4 lysozyme are analyzed (T4L-N40C and T4L-K48C), which have been found from electronic paramagnetic resonance (EPR) experiments to exhibit different mobilities at the site of spin probe attachment (N- and C-terminus of helix B, respectively). Similarities and differences in solvent distribution and diffusion around the spin label, as well as around exposed and buried residues within the protein, are discussed. The purpose is to capture possible strong interactions between the spin label (ring) and solvent molecules, which may affect EPR lineshapes. The effect of backbone motions on the water density profiles is also investigated. The focus is on the domain closure associated with the T4 lysozyme hinge-bending motion, which is analyzed by Essential Dynamics (ED). The N-terminus of helix B is found to be a "hinge" residue, which explains the high degree of flexibility and motional freedom at this site.  相似文献   

17.
Protein kinase C (PKC) is a family of signal transducing enzymes that have been implicated in anesthetic preconditioning signaling cascade. Evidences are emerging that certain exogenous neuromodulators such as n-alkanols and general anesthetics can stimulate PKC activity by binding to regulatory C1A domain of the enzyme. However, the accurate binding sites in C1A domain as well as the molecular mechanism underlying binding-stimulated PKC activation still remain unelucidated. Here, we report a systematic investigation of the intermolecular interaction of human PKCδ C1A domain with its natural activator phorbol ester (PE) and co-activator dioleoylglycerol (DOG) as well as exogenous stimulators butanol, octanol and sevoflurane. The domain is computationally identified to potentially have three spatially vicinal ligand-binding pockets 1, 2 and 3, in which the pockets 1 and 2 have previously been determined as the binding sites of PE and DOG, respectively. Systematic cross-binding analysis reveals that long-chain octanol and DOG are well compatible with the flat, nonpolar pocket 2, where the nonspecific hydrophobic contacts and van der Waals packing are primarily responsible for the binding, while the general anesthetic sevoflurane prefer to interact with the rugged, polar pocket 3 through specific hydrogen bonds and electrostatic forces. Short-chain butanol appears to bind effectively none of the three pockets. In addition, the pocket 1 consists of two angled arms 1 and 2 that are also involved in pockets 2 and 3, respectively. Dynamics characterization imparts that binding of long-chain octanol and DOG to pocket 2 or binding of sevoflurane to pocket 3 can induce a conformational displacement in arm 1 or 2, thus further opening the included angle and enlarging pocket 1, which can improve the pocket 1-PE affinity via an allosteric mechanism, consequently stimulating the PE-induced PKCδ activation.  相似文献   

18.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

19.
Microarrays of peptide and recombinant protein libraries are routinely used for high-throughput studies of protein–protein interactions and enzymatic activities. Imaging mass spectrometry (IMS) is currently applied as a method to localize analytes on thin tissue sections and other surfaces. Here, we have applied IMS as a label-free means to analyze protein–peptide interactions in a microarray-based phosphatase assay. This IMS strategy visualizes the entire microarray in one composite image by collecting a predefined raster of matrix-assisted laser desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry spectra over the surface of the chip. Examining the bacterial tyrosine phosphatase YopH, we used IMS as a label-free means to visualize enzyme binding and activity with a microarrayed phosphopeptide library printed on chips coated with either gold or indium–tin oxide. Furthermore, we demonstrate that microarray-based IMS can be coupled with surface plasmon resonance imaging to add kinetic analyses to measured binding interactions. The method described here is within the capabilities of many modern MALDI–TOF instruments and has general utility for the label-free analysis of microarray assays.  相似文献   

20.
Coagulation factor X (FX) zymogen activation by factor IXa (FIXa) enzyme plays a critical role in the middle-phase of coagulation cascade. The activation process is catalytically inert and requires FIXa binding and complex formation with co-factor VIIIa (FVIIIa). In order to understand the structural details of the FVIIIa:FIXa complex, we employed knowledge-driven protein–protein docking and aqueous-phase MD refinement methods to develop a stable structural complex between FVIIIa and FIXa. The model shows that all four domains of FIXa wrap across FVIIIa that spans the co-factor binding surface of A2, A3 and C1 domains. The region surrounding the 558-helix of the A2-domain of FVIIIa is predicted to be the key interaction site with the helical segments of Lys293–Lys301 and Asp332–Arg338 residues of the serine-protease domain of FIXa. The hydrophobic helical stack between the GLA and EGF1 domains of FIXa is predicted to be primary interacting region with the A3–C2 domain interface of FVIIIa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号