首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.

Background

The determination of protein–protein interfaces is of crucial importance to understand protein function and to guide the design of compounds. To identify protein–protein interface by NMR spectroscopy, 13C NMR paramagnetic shifts induced by freely diffusing 4-hydroxy-2, 2, 6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) are promising, because TEMPOL affects distinct 13C NMR chemical shifts of the solvent accessible nuclei belonging to proteins of interest, while 13C nuclei within the interior of the proteins may be distinguished by a lack of such shifts.

Method

We measured the 13C NMR paramagnetic shifts induced by TEMPOL by recording 13C–13C TOCSY spectra for ubiquitin in the free state and the complex state with yeast ubiquitin hydrolase1 (YUH1).

Results

Upon complexation of ubiquitin with YUH1, 13C NMR paramagnetic shifts associated with the protein binding interface were reduced by 0.05 ppm or more. The identified interfacial atoms agreed with the prior X-ray crystallographic data.

Conclusions

The TEMPOL-induced 13C chemical shift perturbation is useful to determine precise protein–protein interfaces.

General significance

The present method is a useful method to determine protein–protein interface by NMR, because it has advantages in easy sample preparations, simple data analyses, and wide applicabilities.  相似文献   

2.
Kawabata T  Go N 《Proteins》2007,68(2):516-529
One of the simplest ways to predict ligand binding sites is to identify pocket-shaped regions on the protein surface. Many programs have already been proposed to identify these pocket regions. Examination of their algorithms revealed that a pocket intrinsically has two arbitrary properties, "size" and "depth". We proposed a new definition for pockets using two explicit adjustable parameters that correspond to these two arbitrary properties. A pocket region is defined as a space into which a small probe can enter, but a large probe cannot. The radii of small and large probe spheres are the two parameters that correspond to the "size" and "depth" of the pockets, respectively. These values can be adjusted individual putative ligand molecule. To determine the optimal value of the large probe spheres radius, we generated pockets for thousands of protein structures in the database, using several size of large probe spheres, examined the correspondence of these pockets with known binding site positions. A new measure of shallowness, a minimum inaccessible radius, R(inaccess), indicated that binding sites of coenzymes are very deep, while those for adenine/guanine mononucleotide have only medium shallowness and those for short peptides and oligosaccharides are shallow. The optimal radius of large probe spheres was 3-4 A for the coenzymes, 4 A for adenine/guanine mononucleotides, and 5 A or more for peptides/oligosaccharides. Comparison of our program with two other popular pocket-finding programs showed that our program had a higher performance of detecting binding pockets, although it required more computational time.  相似文献   

3.
4.
Systematic investigation of a protein and its binding site characteristics are crucial for designing small molecules that modulate protein functions. However, fundamental uncertainties in binding site interactions and insufficient knowledge of the properties of even well‐defined binding pockets can make it difficult to design optimal drugs. Herein, we report the development and implementation of a cavity detection algorithm built with HINT toolkit functions that we are naming Vectorial Identification of Cavity Extents (VICE). This very efficient algorithm is based on geometric criteria applied to simple integer grid maps. In testing, we carried out a systematic investigation on a very diverse data set of proteins and protein–protein/protein–polynucleotide complexes for locating and characterizing the indentations, cavities, pockets, grooves, channels, and surface regions. Additionally, we evaluated a curated data set of unbound proteins for which a ligand‐bound protein structures are also known; here the VICE algorithm located the actual ligand in the largest cavity in 83% of the cases and in one of the three largest in 90% of the cases. An interactive front‐end provides a quick and simple procedure for locating, displaying and manipulating cavities in these structures. Information describing the cavity, including its volume and surface area metrics, and lists of atoms, residues, and/or chains lining the binding pocket, can be easily obtained and analyzed. For example, the relative cross‐sectional surface area (to total surface area) of cavity openings in well‐enclosed cavities is 0.06 ± 0.04 and in surface clefts or crevices is 0.25 ± 0.09. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Molecular docking is a popular way to screen for novel drug compounds. The method involves aligning small molecules to a protein structure and estimating their binding affinity. To do this rapidly for tens of thousands of molecules requires an effective representation of the binding region of the target protein. This paper presents an algorithm for representing a protein's binding site in a way that is specifically suited to molecular docking applications. Initially the protein's surface is coated with a collection of molecular fragments that could potentially interact with the protein. Each fragment, or probe, serves as a potential alignment point for atoms in a ligand, and is scored to represent that probe's affinity for the protein. Probes are then clustered by accumulating their affinities, where high affinity clusters are identified as being the "stickiest" portions of the protein surface. The stickiest cluster is used as a computational binding "pocket" for docking. This method of site identification was tested on a number of ligand-protein complexes; in each case the pocket constructed by the algorithm coincided with the known ligand binding site. Successful docking experiments demonstrated the effectiveness of the probe representation.  相似文献   

6.
Cavasotto CN  Orry AJ  Abagyan RA 《Proteins》2003,51(3):423-433
G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in signal transmission. Drugs associated with GPCRs represent more than one fourth of the 100 top-selling drugs and are the targets of more than half of the current therapeutic agents on the market. Our methodology based on the internal coordinate mechanics (ICM) program can accurately identify the ligand-binding pocket in the currently available crystal structures of seven transmembrane (7TM) proteins [bacteriorhodopsin (BR) and bovine rhodopsin (bRho)]. The binding geometry of the ligand can be accurately predicted by ICM flexible docking with and without the loop regions, a useful finding for GPCR docking because the transmembrane regions are easier to model. We also demonstrate that the native ligand can be identified by flexible docking and scoring in 1.5% and 0.2% (for bRho and BR, respectively) of the best scoring compounds from two different types of compound database. The same procedure can be applied to the database of available chemicals to identify specific GPCR binders. Finally, we demonstrate that even if the sidechain positions in the bRho binding pocket are entirely wrong, their correct conformation can be fully restored with high accuracy (0.28 A) through the ICM global optimization with and without the ligand present. These binding site adjustments are critical for flexible docking of new ligands to known structures or for docking to GPCR homology models. The ICM docking method has the potential to be used to "de-orphanize" orphan GPCRs (oGPCRs) and to identify antagonists-agonists for GPCRs if an accurate model (experimentally and computationally validated) of the structure has been constructed or when future crystal structures are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号