首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using (i) monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and (ii) cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

2.
The notochord and notochordal sheath of 10 adult amphioxus were investigated ultrastructurally and histochemically. The notochord in amphioxus consists of parallel notochordal cells (plates) and each plate consists of parallel thicker and thinner fibrils and numerous profiles of smooth endoplasmic reticulum situated just beneath the cell membrane. Histochemical staining shows that the notochordal plates resemble neither the connective tissue notochordal sheath nor the typical muscular structure myotomes. The notochordal sheath has a complex three-layered organization with the outer, middle and inner layer The outer and middle layer are composed of collagen fibers of different thickness and course, that correspond to collagen type I and collagen type III in vertebrates, respectively, and the inner layer is amorphous, resembles basal lamina, and is closely attached to the notochord by hemidesmosome junctions. These results confirm the presence of collagen fibers and absence of elastic fibers in amphioxus.  相似文献   

3.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

4.
A major cytoskeletal and extracellular matrix proteins of the amphioxus notochordal cells and sheath were detected by immunohistochemical techniques. The three-layered amphioxus notochordal sheath strongly expressed fish collagen type I in its outer and middle layers, while in the innermost layer expression did not occur. The amphioxus notochordal sheath was reactive to applied anti-human antibodies for intermediate filament proteins such as cytokeratins, desmin and vimentin, as well as to microtubule components (beta-tubulin), particularly in the area close to the epipharyngeal groove. Alpha-smooth muscle actin was expressed in some notochordal cells and in the area of the notochordal attachment to the sheath. Thus muscular nature of notochordal cells was shown by immunohistochemistry in tissue section. Our results confirm that genes encoding intermediate filament proteins, microtubules and microfilaments are highly conserved during evolution. Collagen type I was proven to be the key extracellular matrix protein that forms the amphioxus notochordal sheath.  相似文献   

5.
A comparison of the synthesis and deposition of fibrous type II collagen and the constituents of chondroitin sulfate proteoglycan (CSPG) aggregates, CSPG monomer and link protein, was made for chicken sternal chondrocytes in culture, using simultaneous double immunofluorescence and lectin localization. Chondrocytes deposited only CSPG constituents--and not type II collagen--into the extracellular matrix (ECM). Intracellular precursors of CSPG monomer were localized primarily in perinuclear regions, but were observed in other cytoplasmic vesicles as well. Link protein antibodies stained the same intracellular structures, but stained the perinuclear cytoplasm less intensely. In contrast, type II procollagen was distributed in vesicles throughout the cytoplasm and was clearly absent from the distinctive, CSPG precursor-containing vesicles. Fluorescence-labelled lectins were used to further identify intracellular membrane compartments. Wheat germ agglutinin (WGA) and Ricinus lectins (which recognize carbohydrates added in the Golgi) stained the perinuclear cytoplasm, while concanavalin A (conA) (which recognizes mannose-rich oligosaccharides added co-translationally) stained vesicles throughout the rest of the cytoplasm and not the perinuclear cytoplasm. The distinctive CSPG-containing vesicles were not stained with WGA or Ricinus agglutinins. Data presented elsewhere demonstrate that the vesicles do not react with monoclonal antibodies which recognize chondroitin sulfate (CS) or keratan sulfate (KS) determinants. Thus, we conclude that the vesicles accumulate CSPG precursors which have not been modified by Golgi-mediated processes. The data indicate that matrix molecules may be segregated selectively prior to transit through the Golgi complex. The co-distribution of link protein and CSPG monomer precursors in vesicles prior to further, Golgi-mediated modification may reflect an as yet undetermined function of these vesicles in the processing or assembly of CSPG.  相似文献   

6.
Previous studies have demonstrated the presence of type II collagen (in mature chickens predominantly a 'cartilage-specific' collagen) in a variety of embryonic extracellular matrices that separate epithelia from mesenchyme. In an immunohistochemical study using collagen type-specific monoclonal antibodies, we asked whether type IX collagen, another 'cartilage-specific' collagen, is coexpressed along with type II at such interfaces. We confirmed that, in the matrix underlying a variety of cranial ectodermal derivatives and along the ventrolateral surfaces of neuroepithelia, type II collagen is codistributed with collagen types I and IV. Type IX collagen, however, was undetectable at those sites. We observed immunoreactivity for type IX collagen only within the notochordal sheath, where it first appeared at a later stage than did collagen types I and II. We also observed type II collagen (without type IX) beneath the dorsolateral ectoderm at stage 16; this correlates with the period during which limb ectoderm has been reported to induce the mesoderm to become chondrogenic. Finally, in older hind limbs we observed subepithelial type II collagen that was not associated with subsequent chondrogenesis, but appeared to parallel the formation of feathers and scales in the developing limb. These observations suggest that the deposition of collagen types II and IX into interfacial matrices is regulated independently, and that induction of mesenchymal chondrogenesis by such matrices does not involve type IX collagen. Subepithelial type IX collagen deposition, on the other hand, correlates with the assembly of a thick multilaminar fibrillar matrix, as present in the notochordal sheath and, as shown previously, in the corneal primary stroma.  相似文献   

7.
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

8.
H Hagiwara 《Histochemistry》1992,98(5):305-309
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

9.
Synopsis Small, rounded vesicles with a dense core of amorphous material were observed in all cell types in the young rat aorta, that is, endothelial cells, smooth muscle cells and fibroblasts. They were particularly numerous in the Golgi complex but were also found in the cell periphery. The content of the vesicles had staining characteristics identical to those of elastin. Material of the same type was also found in cisternae on the maturing side of the dictyosomes and in vesicles budding from them. Reaction product for thiamine pyrophosphatase was present in both these structures, indicating that the Golgi complex is responsible for the formation of the dense-cored vesicles. This was further supported by the absence of reaction product for acid phosphatase in the cisternae and in the vesicles. Moreover, no uptake of exogenous markers was noted in the latter. On the basis of these findings it is suggested that the dense-cored vesicles have a secretory function and contain precursors of elastin.Elongated vesicles or profiles containing collagen fibrils were observed in smooth muscle cells and fibroblasts. In the cell periphery, these vesicles were often found to communicate with the extracellular space. Further inside the cells, they showed a close spatial relationship to the Golgi complex. Neither thiamine pyrophosphatase nor acid phosphatase activity was demonstrated in the elongated vesicles. Like the plasma membrane, their limiting membrane was positively stained for alkaline phosphatase. On the basis of these findings and the absence of uptake of exogenous markers in them, it is suggested that the elongated vesicles represent a means for collagen secretion in the growing aortic wall. The Golgi complex is believed to be involved in the transfer of collagen to these vesicles.  相似文献   

10.
Vascular endothelial growth factor (VEGF)mRNA undergoes alternative splicing events that generate four different homodimeric isoforms, VEGF121, VEGF165, VEGF189, or VEGF206. VEGF121 is a nonheparin-binding acidic protein, which is freely diffusible. The longer forms, VEGF189 or VEGF206, are highly basic proteins tightly bound to extracellular heparin-containing proteoglycans. VEGF165 has intermediate properties. To determine the localization of VEGF isoforms, transfected human embryonic kidney CEN4 cells expressing VEGF165, VEGF189, or VEGF206 were stained by immunofluorescence with a specific monoclonal antibody. The staining was found in patches and streaks suggestive of extracellular matrix (ECM). VEGF165 was observed largely in Golgi apparatus-like structures. Immunogold labeling of cells expressing VEGF189 or VEGF206 revealed that the staining was localized to the subepithelial ECM. VEGF associated with the ECM was bioactive, because endothelial cells cultured on ECM derived from cells expressing VEGF189 or VEGF206 were markedly stimulated to proliferate. In addition, ECM-bound VEGF can be released into a soluble and bioactive form by heparin or plasmin. ECM-bound VEGF189 and VEGF206 have molecular masses consistent with the intact polypeptides. The ECM may represent an important source of VEGF and angiogenic potential.  相似文献   

11.
Topochemical characteristics of reactions of different types of collagen-containing structures with Concanavalin A (Con A) have not been considered up to now. In this study the presence and availability of glucose residues of collagen molecules from intestine, liver, cartilage and tendon are detected using Con A and horseradish peroxidase (HRP). In intestine, cartilage and tendon sections, the Con A-HRP method was only significantly positive when the sections were first submitted to treatment with papain. This suggested the presence of glycoproteins and proteoglycans of the extracellular matrix (ECM), which might interfere either interacting with lateral sugar residues of the collagen molecules, or causing some steric blockade or even masking as occurs in regions with a high state of compactness.  相似文献   

12.
The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.  相似文献   

13.
Tissue engineering is a promising option for cartilage repair. However, several hurdles still need to be overcome to develop functional tissue constructs suitable for implantation. One of the most common challenges is the general low capacity of chondrocytes to synthesize cartilage-specific extracellular matrix (ECM). While different approaches have been explored to improve the biosynthetic response of chondrocytes, several studies have demonstrated that the nutritional environment (e.g., glucose concentration and media volume) can have a profound effect on ECM synthesis. Thus, the purpose of this study was to optimize the formulation of cell culture media to upregulate the accumulation of cartilaginous ECM constituents (i.e., proteoglycans and collagen) by chondrocytes in 3D culture. Using response surface methodology, four different media factors (basal media, media volume, glucose, and glutamine) were first screened to determine optimal media formulations. Constructs were then cultured under candidate optimal media formulations for 4 weeks and analyzed for their biochemical and structural properties. Interestingly, the maximal accumulation of proteoglycans and collagen appeared to be elicited by different media formulations. Most notably, proteoglycan accumulation was favored by high volume, low glucose-containing DMEM/F12 (1:1) media whereas collagen accumulation was favored by high volume, high glucose-containing F12 media. While high glutamine-containing media elicited increased DNA content, glutamine concentration had no apparent effect on ECM accumulation. Therefore, optimizing the nutritional environment during chondrocyte culture appears to be a promising, straight-forward approach to improve cartilaginous tissue formation. Future work will investigate the combined effects of the nutritional environment and external stimuli.  相似文献   

14.
Fibrillar collagen–integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril–integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.  相似文献   

15.
A monoclonal antibody, anti-Pisaster matrix-1 (anti-PM1) has been developed against an extracellular matrix antigen, Pisaster matrix-1 (PM1) found in embryos and larvae of the starfish Pisaster ochraceus . Pisaster matrix-1 was first observed in endodermal cells of the early gastrula, and shortly thereafter it was secreted into the blastocoel where it accumulated steadily during gastrulation. During the late gastrula stage it also appeared in the extracellular matrix (ECM) of the gut lumen. Immunogold electron microscopy with anti-PM1 revealed that PM1 was found in condensations of ECM associated with blastocoel matrix fibers, in the trans Golgi network, in Golgi-associated vesicles in endoderm and mesenchyme cells and throughout the ECM lining the digestive tract of late gastrula and bipinnaria larvae. When blastula or early gastrula stage embryos were grown in the presence of the PM1 antibody, archenteron elongation, bending and mouth formation failed to occur. Pisaster matrix-1 stained with alcian blue and its assembly could be disrupted with the common inhibitor of O-linked glycosaminoglycan assembly, β-xyloside but not by tunicamycin. It was not sensitive to enzymes that degrade vertebrate proteoglycans. Pisaster matrix-1 is a large (600 kDa) proteoglycan-like glycosaminoglycan, secreted exclusively by endodermal and/or endodermally derived cells that may be necessary for morphogenesis of the mouth and digestive tract of Pisaster ochraceus embryos/larvae.  相似文献   

16.
The occurrence of phosphorylated secretory proteins such as caseins and vitellogenin and the recent characterization of phosphorylated proteoglycans, in the xylose and protein core, has raised the question of where in the cell and how this phosphorylation occurs. Previous studies have described a casein kinase activity in the lumen of the Golgi apparatus and this organelle as the site of xylose addition to the protein core of proteoglycans. We now report the translocation in vitro of ATP into the lumen of rat liver and mammary gland Golgi vesicles which are sealed and have the same membrane topographical orientation as in vivo. The entire ATP molecule was translocated into the lumen of the Golgi vesicles; this was established by using ATP radiolabeled with tritium in the adenine and gamma-32P. Translocation was temperature dependent and saturable, with an apparent Km of 0.9 microM and Vmax of 58 pmol/mg protein/min. Preliminary evidence suggests that translocation of ATP into the vesicles' lumen is coupled to exit of AMP from the lumen. Following translocation of ATP into the lumen of the vesicles, proteins were phosphorylated.  相似文献   

17.
The pericellular region of the extracellular matrix (ECM) contains collagens, proteoglycans and other noncollagenous matrix proteins. Although such specialized pericellular ECM has been well studied in articular cartilage, little is known about the pericellular matrix in the disc. In the study reported here, pericellular matrix was studied in annulus tissue from 52 subjects ranging in age from 17-74 years. In aging/degenerating intervertebral discs, cells were identified that formed a distinctive cocoon of encircling pericellular ECM. Immunohistochemical studies identified types I, II, III and VI collagen in these pericellular sites with diverse morphological features. Similar types of changes in the pericellular matrix were observed in both surgical specimens and control donor discs. Results indicate the need for future studies to address why such specialized matrix regions form around certain disc cells and to determine the consequences of these unusual matrix regions on annular lamellar organization and function.  相似文献   

18.
The pericellular region of the extracellular matrix (ECM) contains collagens, proteoglycans and other noncollagenous matrix proteins. Although such specialized pericellular ECM has been well studied in articular cartilage, little is known about the pericellular matrix in the disc. In the study reported here, pericellular matrix was studied in annulus tissue from 52 subjects ranging in age from 17-74 years. In aging/degenerating intervertebral discs, cells were identified that formed a distinctive cocoon of encircling pericellular ECM. Immunohistochemical studies identified types I, II, III and VI collagen in these pericellular sites with diverse morphological features. Similar types of changes in the pericellular matrix were observed in both surgical specimens and control donor discs. Results indicate the need for future studies to address why such specialized matrix regions form around certain disc cells and to determine the consequences of these unusual matrix regions on annular lamellar organization and function.  相似文献   

19.
Extracellular matrix in development of the intervertebral disc.   总被引:8,自引:0,他引:8  
Intervertebral discs allow bending and twisting of the spine whilst resisting compression from gravity and muscle action, and are composite structures of the peripheral annulus fibrosus enclosing the nucleus pulposus. Their development is complex, involving several different connective tissue types, yet little is known of the developing extracellular matrix (ECM). We report the ECM composition of foetal rat discs from their first appearance to birth. The earliest collagen detected was type III, which was subsequently replaced by type II in the cartilaginous inner annulus and joined by type I in the fibrous outer annulus. Type IV collagen appeared in outer annulus, associated with myofibroblast-like cells of the orienting collagenous lamellae. Laminin and fibronectin co-distributed here in later stages, although overall they had a wider distribution. Aggrecan occurred in early nucleus pulposus and then appeared in the inner annulus, in association with cartilage differentiation. Versican appeared later in the inner annulus, and also in the dorsal region of the outer annulus. Comparisons of glycosaminoglycan and proteoglycan label allowed extrapolations to be made as to likely glycosaminoglycan components of the large proteoglycans, and of other proteoglycans that may be present - thus differential distribution of aggrecan and keratan sulfate label suggested the presence of fibromodulin and/or lumican. Functionally aggrecan would confer compression resistance to cartilaginous structures. Versican may also contribute, but along with the small proteoglycans is likely to be associated with various stages of control of cell differentiation, tissue morphogenesis and collagen fibre formation in the assembly of the annulus fibrosus.  相似文献   

20.
The Nucleus of the Intervertebral Disc from Development to Degeneration   总被引:6,自引:1,他引:5  
The nucleus of the intervertebral disc in humans shows the mostdramatic changes with age of any cartilaginous tissue. It originatesfrom the notochord. In the foetus and infant, the nucleus containsactively dividing and biosynthetically active notochordal cells.The proteoglycans and other matrix components produced havea high osmotic pressure, imbibe water and maintain a hydratedstructure which, though it has little mechanical strength, hasa high swelling pressure which maintains disc turgor. In somespecies, the notochordal cells and the mucoid nucleus pulposuspersist throughout adult life. However by about 4 yr of agein humans, the notochordal cells have disappeared to be replacedby those of chondrocytic appearance but of unknown origin. Thesecells continue to produce proteoglycans but also synthesizesignificant amounts of collagen. The nucleus becomes firmerand less hydrated and loses its transparent appearance. Thecell density of the adult nucleus is very low with cells occupyingless than 0.5% of tissue volume; each cell thus has to turnover and maintain a large domain of extracellular matrix. Thedensity of living cells decreases with age, possibly becauseof problems with nutrient supply to this large avascular tissue.Proteoglycan concentration also falls, and nucleus hydrationdecreases markedly, the disc discolours and in many cases cleftsand fissures form. In most adults, the disc nucleus degenerateseventually to a stage where it can no longer fulfil its mechanicalrole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号