首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Culture liquid from Geotrichum candidum 3C was shown to contain three endoxylanase types: endoxylanase I that binds to cellulose, endoxylanase II that sorbs to insoluble xylan, and endoxylanase III that cannot sorb to insoluble substrate. The catalytic and substrate-binding domains of endoxylanase II were isolated.  相似文献   

2.
An affinity chromatography method has been developed for purification of endoxylanase inhibitors concentrated by cation exchange chromatography from wheat whole meal and is based on immobilisation of a Bacillus subtilis family 11 endoxylanase on N -hydroxysuccinimide activated Sepharose 4 Fast Flow. When followed by high-resolution cation exchange chromatography, the purification of seven TAXIs, Triticum aestivum L. endoxylanase inhibitors was achieved so extending the number of such proteins known to date (TAXI I and II). Based on their inhibition activities against a B. subtilis family 11 and an Aspergillus niger family 11 endoxylanase, six TAXI I- and only one TAXI II-like inhibitor could be distinguished. The first type of endoxylanase inhibitor is active against both endoxylanases and the second type only has significant activity against the B. subtilis endoxylanase.  相似文献   

3.
An affinity chromatography method has been developed for purification of endoxylanase inhibitors concentrated by cation exchange chromatography from wheat whole meal and is based on immobilisation of a Bacillus subtilis family 11 endoxylanase on N-hydroxysuccinimide activated Sepharose 4 Fast Flow. When followed by high-resolution cation exchange chromatography, the purification of seven TAXIs, Triticum aestivum L. endoxylanase inhibitors was achieved so extending the number of such proteins known to date (TAXI I and II). Based on their inhibition activities against a B. subtilis family 11 and an Aspergillus niger family 11 endoxylanase, six TAXI I- and only one TAXI II-like inhibitor could be distinguished. The first type of endoxylanase inhibitor is active against both endoxylanases and the second type only has significant activity against the B. subtilis endoxylanase.  相似文献   

4.
The electrophoretic karyotype of the filamentous fungus Penicillium purpurogenum has been resolved. Using contour-clamped homogeneous electric field gel electrophoresis, five chromosomal bands were separated, with estimated sizes of 7.1, 5.2, 3.7, 2.9 and 2.3 Mbp, giving a total genome size of 21.2 Mbp. To our knowledge, this is the smallest Penicillium genome determined so far. By Southern blots and using homologous probes, the chromosomal location of five xylanolytic genes from P. purpurogenum was determined: axeI (acetyl xylan esterase I), xynB (endoxylanase B) and abf1 (arabinofuranosidase 1) in chromosome I, xynA (endoxylanase A) in chromosome II, and axeII (acetyl xylan esterase II) in chromosome III. This is the first study where the location of xylanase genes in a Penicillium genome has been established.  相似文献   

5.
The endoxylanase gene (xynB, GeneBank access code U51675), including its signal sequence, from Bacillus spp. was amplified and connected in frame downstream of yeast ADH1 promoter and then the resulting plasmid, pAEDX-1, was introduced into Saccharomyces cerevisiae. When the yeast transformants were grown on YPD medium, the majority of endoxylanase activity was detected in the extracellular culture medium, indicating that the signal peptide of Bacillus endoxylanase functioned well in yeast. In the batch cultivation of yeast transformants, the total expression level of endoxylanase and secretion efficiency were measured to be about 9.8 U/mL and 66.2%, respectively. The extracellular endoxylanase expressed in yeast showed an enhanced thermal stability due to the N-linked glycosylation. Through the hydrolysis of birchwood xylan with the endoxylanase, it was found that xylobiose and xylotriose were produced as major products with equimolar ratio.  相似文献   

6.
Papaya fruit softening, endoxylanase gene expression, protein and activity   总被引:3,自引:0,他引:3  
Papaya ( Carica papaya L.) cell wall matrix polysaccharides are modified as the fruit starts to soften during ripening and an endoxylanase is expressed that may play a role in the softening process. Endoxylanase gene expression, protein amount and activity were determined in papaya cultivars that differ in softening pattern and in one cultivar where softening was modified by the ethylene receptor inhibitor 1-methylcyclopropene (1-MCP). Antibodies to the endoxylanase catalytic domain were used to determine protein accumulation. The three papaya varieties used in the study, 'Line 8', 'Sunset', and 'Line 4-16', differed in softening pattern, respiration rate, ethylene production and showed similar parallel relationships during ripening and softening in endoxylanase expression, protein level and activity. When fruit of the three papaya varieties showed the respiratory climacteric and started to soften, the level of endoxylanase gene expression increased and this increase was related to the amount of endoxylanase protein at 32 kDa and its activity. Fruit when treated at less than 10% skin yellow stage with 1-MCP showed a significant delay in the respiratory climacteric and softening, and reduced ethylene production, and when ripe was firmer and had a 'rubbery' texture. The 1-MCP-treated fruit that had the 'rubbery' texture showed suppressed endoxylanase gene expression, protein and enzymatic activity. Little or no delay occurred between endoxylanase gene expression and the appearance of activity during posttranslational processing from 65 to 32 kDa. The close relationship between endoxylanase gene expression, protein accumulation and activity in different varieties and the failure of the 1-MCP-treated fruit to fully soften, supported de novo synthesis of endoxylanase, rapid posttranslation processing and a role in papaya fruit softening.  相似文献   

7.
Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors. The present paper focuses on the TAXI-type proteins and deals with their structural characteristics and the identification, characterisation and heterologous expression of a TAXI gene from wheat. In addition, to shed light on the mechanism by which TAXI-type endoxylanase inhibitors work, the enzyme specificity, the optimal conditions for maximal inhibition activity, the molar complexation ratio and the inhibition kinetics of the inhibitors are explained and the effect of mutations of an endoxylanase on the inhibition by TAXIs is discussed.  相似文献   

8.
An extremely thermophilic bacterial isolate that produces a high titer of thermostable endoxylanase and β-xylosidase extracellularly in an inducible manner was identified as Geobacillus thermodenitrificans TSAA1. The distinctive features of this strain are alkalitolerance and halotolerance. The endoxylanase is active over a broad range of pH (5.0–10.0) and temperatures (30–100 °C) with optima at pH 7.5 and 70 °C, while β-xylosidase is optimally active at pH 7.0 and 60 °C. The T 1/2 values of the endoxylanase and β-xylosidase are 30 min at 80 °C, and 180 min at 70 °C, respectively. The endoxylanase activity is stimulated by dithiothreitol, but inhibited strongly by EDAC and Woodward’s reagent K. N-BS and DEPC strongly inhibited β-xylosidase. MALDI-ToF (MS/MS) analysis of tryptic digest of β-xylosidase revealed similarity with that of G. thermodenitrificans NG 80-2, and suggested that this belongs to the GH 52 glycosyl hydrolase super family. The action of endoxylanase on birch wood xylan and agro-residues such as wheat bran and wheat straw liberated xylooligosaccharides similar to endoxylanases of the family 10 glycoside hydrolases, while the enzyme preparation having both endoxylanase and β-xylosidase liberated xylose as main hydrolysis product.  相似文献   

9.
During growth on xylan and xylose Thermoanaerobacterium saccharolyticum B6A-RI produced endoxylanase, β-xylosidase, arabinofuranosidase, and acetyl esterase, and the first three activities appeared to be produced coordinately. During nonlimiting growth on xylan, these enzyme activities were predominantly cell associated; however, during growth on limiting concentrations of xylan, the majority of endoxylanase activity was extracellular rather than cell associated. Endoxylanase, β-xylosidase, and arabinofuranosidase activities were induced by xylan, xylose, and arabinose, respectively. Acetyl esterase activity was constitutive, and endoxylanase activity was catabolite repressed by glucose. Extracellular endoxylanase existed as a high-molecular-weight complex (molecular weight, more than 106). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymograms, the crude endoxylanase complex was composed of at least six activity bands. Endoxylanase was purified by gel filtration with Sephacryl S-300 and affinity chromatography with xylan coupled to Sepharose CL-4B preequilibrated to 45°C with 50 mM sodium acetate buffer (pH 4.0) and eluted with 0.1% soluble xylan. A single area of endoxylanase activity was identified on the zymogram; when this activity was analyzed by SDS-PAGE, it was composed of a major protein with a molecular weight of approximately 160,000 and a minor protein with a molecular weight of approximately 130,000. The endoxylanase activity stained with Schiff's reagent, indicative of glycoproteins, displayed a specific activity of 41 U/mg of protein on xylan, and had pH and temperature optima of 6.0 and 70°C, respectively.  相似文献   

10.
AIMS: To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. METHODS AND RESULTS: The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. CONCLUSIONS: The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.  相似文献   

11.
Papaya (Carica papaya L.) cultivars show a wide variation in fruit softening rates, a character that determines fruit quality and shelf life, and thought to be the result of cell wall degradation. The activity of pectin methylesterase, β-galactosidase, endoglucanase, endoxylanase and xylosidase were correlated with normal softening, though no relationship was found between polygalacturonase activity and softening. When softening was modified by 1-MCP treatment, a delay occurred before the normal increase in activities of all cell wall activities except endoxylanase which was completely suppressed. Significant cell wall mass loss occurred in the mesocarp tissue during normal softening, but did not occur to the same extent following 1-MCP treatment. During normal softening, pectin polysaccharides and loosely bound matrix polysaccharides were solubilized and the release of xylosyl and galactosyl residues occurred. Cell wall changes in galactosyl residues after 1-MCP treatment were comparable to those of untreated fruit but 1-MCP treated fruit did not soften completely. The changes in the cell wall fractions containing xylosyl residues in 1-MCP treated fruit showed less solubilization and a higher association of xylosyl residues with the pectic polysaccharides. The results indicated that normal modification of cell wall xylosyl components during ripening did not occur following 1-MCP treatment at the color-break stage, this was associated with the failure of these fruit to fully soften and a selective suppression of endoxylanase activity. The results support a role for endoxylanase in normal papaya fruit softening and its suppression by 1-MCP lead to a failure to fully soften. Normal papaya ripening related softening was dependent upon the expression and activity of endoglucanase, β-galactosidase and endoxylanase.  相似文献   

12.
13-1,4-endoxylanase from Triehoderma pseudokonigi Rifai has been purified by anion-exchange chromatography on DEAE-Sephadex A50, DEAE-Sepharose CL-6B and mono Q. The endoxylanase was shown to be homogeneous by Native-PAGE and SDS-PAGE. This endoxylanase is a single-peptide chain protein with a molecular weight estimated as 66 kD. The endoxylanase was purified by 10-fold with a specific activity of 15.87 U·mg-1 Optimum endoxylanase activity was obtained when the enzyme was incubated at pH 4.5, 55 ℃ with a Km of 20 mg/mL and Vmax of 3.3 μmol·min-1·mg-1. Hg2 + and Cu2 + have a strong inhibition while Fe2 + and Mn2 + have a increasing effect on the enzymatic reaction rate.  相似文献   

13.
Two family 11 endoxylanases (EC 3.2.1.8) were functionally displayed on the surface of bacteriophage M13. The genes encoding endo-1,4-xylanase I from Aspergillus niger (ExlA) and endo-1,4-xylanase A from Bacillus subtilis (XynA) were fused to the gene encoding the minor coat protein g3p in phagemid vector pHOS31. Phage rescue resulted in functional monovalent display of the enzymes as was demonstrated by three independent tests. Firstly, purified recombinant phage particles showed a clear hydrolytic activity in an activity assay based on insoluble, chromagenic arabinoxylan substrate. Secondly, specific binding of endoxylanase displaying phages to immobilized endoxylanase inhibitors was demonstrated by interaction ELISA. Finally, two rounds of selection and amplification in a biopanning procedure against immobilized endoxylanase inhibitor were performed. Phages displaying endoxylanases were strongly enriched from background phages displaying unrelated proteins. These results open perspectives to use phage display for analysing protein-protein interactions at the interface between endoxylanases and their inhibitors. In addition, this technology should enable engineering of endoxylanases into novel variants with altered binding properties towards endoxylanase inhibitors.  相似文献   

14.
The role of endocellulases and endoxylanase during liquefaction and saccharification of hydrothermally pretreated wheat straw was studied. The use of a flow‐loop setup with in‐line magnetic resonance imaging enabled frequent measurements of viscosity at 55°C during saccharification at 6% total solids content. Viscosity data were complemented with off‐line measurements of fiber lengths and release of soluble sugars. A clear correlation between fiber attrition and a decrease in viscosity was found. Fiber lengths and viscosity dropped quickly within the first hour and then stagnated, while sugar yields increased substantially thereafter, illustrating that liquefaction and saccharification are separate mechanisms. Both endoglucanase and endoxylanase were shown to have a significant effect on viscosity during liquefaction while the addition of endoxylanase also increased sugar yield. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:923–931, 2014  相似文献   

15.
To produce xylobiose from xylan, high-level expression of an endoxylanase gene from Bacillus sp. was carried out in Bacillus subtilis DB104. A 1.62-kb SmaI DNA fragment, coding for an endoxylanase of Bacillus sp., was ligated into the Escherichia coli/B. subtilis shuttle vector pJH27Δ88, producing pJHKJ4, which was subsequently transformed into B. subtilis DB104. A maximum endoxylanase activity of 105 U/ml was obtained from the supernatant of B. subtilis DB104 harboring pJHKJ4. The endoxylanase was purified to homogeneity by ion-exchange chromatography and the production profile of xylooligosaccharides from xylan by the endoxylanase was examined by HPLC with a carbohydrate analysis column. Xylobiose was the major product from xylan at 40 °C and its proportion in the xylan hydrolyzates increased with the reaction time; at 12 h, over 60% of the reaction products was xylobiose. These results suggest that xylobiose, which has a stimulatory effect on the selective growth of the intestinal bacterium Bifidobacterium, can be mass-produced effectively by the endoxylanase of Bacillus sp. cloned in B. subtilis. Received: 2 January 1998 / Received revision: 4 March 1998 / Accepted: 4 March 1998  相似文献   

16.
A rice XIP-type inhibitor was purified by affinity chromatography with an immobilized Aspergillus aculeatus family 10 endoxylanase. Rice XIP is a monomeric protein, with a molecular mass of ca. 32 kDa and a pI of ca. 5.6. Its N-terminal amino acid sequence was identical to that of a rice chitinase homologue, demonstrating the difficulty when using sequence information to differentiate between endoxylanase inhibitors and (putative) chitinases in rice. Rice XIP inhibited different endoxylanases to a varying degree. In particular, it most strongly inhibited family 10 endoxylanases from A. niger and A. oryzae, while several family 11 enzymes from Bacillus subtilis, A. niger and Trichoderma sp. were not sensitive to inhibition. The above mentioned A. aculeatus endoxylanase was not inhibited either, although gel permeation chromatography revealed that it complexed rice XIP in a 1:1 molar stoichiometric ratio.  相似文献   

17.
Molecular expression of xylanase gene in Cryptococcus albidus   总被引:1,自引:0,他引:1  
In the yeast Cryptococcus albidus, the utilization of xylan as compared to xylose requires at least an inducible endoxylanase enzyme, secreted in the culture medium. The endoxylanase induction was monitored by immunoprecipitation of in vivo and in vitro synthesized products. The mature endoxylanase is a highly glycosylated enzyme with an apparent molecular weight of 48 000. Upon chemical deglycosylation with trifluoromethanesulfonic acid, the molecular weight was reduced to 40 000. Addition of tunicamycin to the culture medium resulted in the synthesis of a modified polypeptide having a molecular weight of 40 000. Poly(A)-containing RNA isolated from the yeast was translated in the rabbit reticulocyte protein-synthesizing system. The appearance of a translatable xylanase mRNA was observed in xylan-grown cells but not in xylose-grown cells. The polypeptide identified as xylanase had a molecular weight of 44 000. This suggests that the xylanase is synthesized as a precursor, containing a peptide signal sequence of 35 residues.  相似文献   

18.
In the yeast Cryptococcus albidus, the utilization of xylan as compared to xylose requires at least an inducible endoxylanase enzyme, secreted in the culture medium. The endoxylanase induction was monitored by immunoprecipitation of in vivo and in vitro synthesized products. The mature endoxylanase is a highly glycosylated enzyme with an apparent molecular weight of 48000. Upon chemical deglycosylation with trifluoromethanesulfonic acid, the molecular weight was reduced to 40000. Addition of tunicamycin to the culture medium resulted in the synthesis of a modified polypeptide having a molecular weight of 40000. Poly(A)-containing RNA isolated from the yeast was translated in the rabbit reticulocyte protein-synthesizing system. The appearance of a translatable xylanase mRNA was observed in xylan-grown cells but not in xylose-grown cells. The polypeptide identified as xylanase had a molecular weight of 44000. This suggests that the xylanase is synthesized as a precursor, containing a peptide signal sequence of 35 residues.  相似文献   

19.
Two combinatorial libraries of glycosyl hydrolase family 11 (GH11) Bacillus subtilis endoxylanase XynA were constructed and displayed on phage. Both phage-displayed libraries were subjected to three consecutive biopanning rounds against immobilized endoxylanase inhibitor TAXI, each time preceded by an incubation step at elevated temperature. DNA sequence analysis of enriched phagemid panning isolates allowed identification of mutations conferring enhanced thermal stability. In particular, substitutions T44C, T44Y, F48C, T87D, and Y94C were retained, and their thermostabilizing effect was confirmed by testing site-directed XynA variants. None of these mutations was identified in earlier endoxylanase engineering studies. Each single mutation increased the half-inactivation temperature by 2-3 °C over that of the wild-type enzyme. Intriguingly, the three selected cysteine variants generated dimers by formation of intermolecular disulfide bridges.  相似文献   

20.
Y E Lee  S E Lowe    J G Zeikus 《Applied microbiology》1993,59(9):3134-3137
The gene encoding endoxylanase (xynA) from Thermoanaerobacterium saccharolyticum B6A-RI was cloned and expressed in Escherichia coli. A putative 33-amino-acid signal peptide, which corresponded to the N-terminal amino acids, was encoded by xynA. An open reading frame of 3,471 bp, corresponding to 1,157 amino acid residues, was found, giving the xynA gene product a molecular mass of 130 kDa. xynA from T. saccharolyticum B6A-RI had strong similarity to genes from family F beta-glycanases. The temperature and pH optimum for the activity of the cloned endoxylanase were 70 degrees C and 5.5, respectively. The cloned endoxylanase A was stable at 75 degrees C for 60 min and displayed a specific activity of 227.4 U/mg of protein on oat spelt xylan. The cloned xylanase was an endo-acting enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号