首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon-gamma (IFN-gamma) is a macrophage-activating factor that has also been shown to act on endothelial cells (EC). Interleukin 1 (IL 1), first described as a monocyte product, is also produced by EC after stimulation by lipopolysaccharide (LPS). In this study, the effect of IFN-gamma on the release of IL 1 by EC stimulated with LPS has been investigated. Although IFN-gamma did not stimulate the release of IL 1 or increase the apparent intracellular pool of IL 1 when incubated with EC, there was an increase in the amount of IL 1 released when cells preincubated with IFN-gamma were stimulated with LPS. The effect of IFN-gamma increased with concentration (1 to 1000 U/ml) and with duration of preincubation (24 to 96 hr). The presence of IFN-gamma was not required during the stimulation with LPS. When EC were cultured without IFN-gamma for increasing time periods up to 96 hr, the amount of IL 1 released by EC on subsequent stimulation with LPS progressively decreased. Addition of as little as 1 U/ml of IFN-gamma, however, prevented the loss in capacity of EC to secrete IL 1 when stimulated with LPS. In vivo, EC are involved in the emigration of mononuclear cells from the blood to inflammatory sites. Because IL 1 is chemotactic for lymphocytes and also increases the binding of lymphocytes to EC, activation of EC by T cell-derived factors such as IFN-gamma may augment lymphocyte emigration by increasing the release of IL 1 at the blood-tissue interface.  相似文献   

2.
Adhesion of lymphocytes to endothelial cells (EC) is the requisite first element in the multistep process of transmigration from blood across the postcapillary venules. Selective expression of cell adhesion molecules (CM) by microvascular EC in lymphoid organs (e.g., lymph nodes) and during tissue inflammation modulates this traffic in a site-directed manner. CAM synthesis by EC is regulated in turn by cytokines released in the local microenvironment. Studies done largely with human umbilical vein EC have implicated IL-1, IFN-gamma, and TNF-alpha as cytokines which promote leukocyte adhesion to EC. In the work reported here, the responses of cultured microvascular EC derived from macaque lymph nodes to IL-1beta, IL-2, IFN-gamma, and IL-4 were examined. Increases in lymphocyte adhesion after preculture of microvascular EC in IL-1beta or IFN-gamma were typically 2-to 4-fold above controls and comparable to those reported for human umbilical vein EC. IL-2 had no effect. In contrast, IL-4 markedly enhanced adhesion to microvascular EC. IL-4-induced adhesion was observed as early as 4 h after induction, plateaued by 24 h, was stable through 72 h of culture, but decayed to basal levels within 72 h after removal of IL-4 from the cultures. IL-1beta, but not IL-2 or IFN-gamma, synergistically enhanced the action of IL-4 on cultured microvascular EC to promote lymphocyte binding. Adhesion triggered in this manner required de novo protein synthesis. However, the avidity of IL-4-activated microvascular EC for lymphocytes, and analyses of kinetics, cation and temperature dependence, and/or lack of blockade with mAb to endothelial leukocyte adhesion molecule-1, intra-cellular adhesion molecule-1, and MECA-79 indicated that these CAM were not central to the phenomenon. To aid identification of the relevant CAM, mAb specific to IL-4-induced microvascular EC were produced. One of these, 6G10, blocked up to 90% of lymphocyte adhesion to IL-4-induced microvascular EC, immunoprecipitated an IL-4-induced cell-surface molecule of 110-kDa molecular mass, and reacted specifically with Chinese hamster ovary cells transfected with human vascular cell adhesion molecule-1. Our results suggest that IL-4 may have potent effects on lymphocyte recirculation in vivo.  相似文献   

3.
Infection of human lymphocytes with Epstein Barr virus (EBV) activates the release of lymphokines. Previous experiments have emphasized the ability of interferon-gamma (IFN-gamma) to prevent EBV-induced B cell transformation. However, the factors that regulate IFN-gamma synthesis and release during in vitro EBV infection are controversial. In the present investigation we have systematically evaluated the kinetics of production, cellular origins, and accessory cell requirements for IFN-alpha and IFN-gamma and for IL 1 and IL 2, after EBV infection. Our data indicate that IFN-alpha is released entirely by natural killer (NK) cells and B cells, in the absence of accessory cells, independently of the other lymphokines and within 24 hr of infection. In contradistinction, IFN-gamma secretion is exclusively of T cell origin, is absolutely dependent on the prior elaboration of IL 1 and IL 2, and is maximal 8 days after EBV infection. IL 2 secretion by T cells peaks on day 5 and requires the earlier release of IL 1. Both NK cells and monocytes are a source of IL 1. Secretion of IL 2 and IFN-gamma occurs in the presence of either one of these cell types but not in the absence of both. Antibody against IL 1 blocks EBV-induced IL 2 and IFN-gamma generation, and antibody against IL 2 decreases production of IFN-gamma. Thus, the production of IFN-gamma, the lymphokine that prevents EBV-induced B cell transformation, is the final outcome of a cascade of lymphokine-mediated events that involve interactions between virus-infected B lymphocytes that serve as antigen-presenting cells, NK cells and monocytes as sources of IL 1, and T lymphoblasts. Dysfunctions of any or all of these cell types would be expected to impair the regulation of EBV transformation.  相似文献   

4.
We investigated the regulation of IL6 biological activity, de novo synthesis, and mRNA levels in adult vascular endothelial cells (EC) by bacterial endotoxin or inflammatory cytokines. Cells incubated without stimulus released scant IL6 activity. IFN gamma, IL2, or PDGF did not augment IL6 release from EC. LPS, lipid A, and TNF increased IL6 release modestly (5 to 20-fold), while recombinant IL1s (rIL1s) stimulated this process 100 to 400-fold. Differential release of IL6 from EC treated with LPS or rIL1 continued for at least 144 hr. Exposure to LPS or rIL1 caused EC to synthesize IL6 de novo. EC secreted the newly synthesized IL6 into the supernatant, rather than retaining it within or bound to cells. EC accumulated IL6 mRNA after 3 hr of exposure to rIL1. However, we could only detect IL6 message in cells incubated with LPS under "superinduction" conditions with cycloheximide, consistent with lower levels of IL6 biological activity in response to LPS compared to IL1 stimulation. We propose that local production of IL6 by vascular EC, which comprise the barrier between tissues and the blood, may influence regional immune and inflammatory responses.  相似文献   

5.
6.
The relative amounts of different pro- and anti-inflammatory cytokines released at the site of infection by bronchoalveolar lavage (BAL) cells may influence the presentation of tuberculosis. To investigate this hypothesis the in situ release by BAL cells of the following cytokines was measured and correlated with the chest X-ray findings of 43 patients with pulmonary tuberculosis: interleukin (IL)-8, macrophage inflammatory protein-1alpha (MIP-1alpha), IL-6, tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), interferon-gamma (IFN-gamma), IL-2, IL-4 and IL-5. The release of IL-8 and IL-6 decreased with the progression of the disease, while the release of MIP-1alpha was increased in patients with advanced tuberculosis. The release of TNF-alpha and TGF-beta did not differ between patients with or without cavitary lesions. The Th1 (IFN-gamma and IL-2) and Th2 (IL-4 and IL-5) cytokine release exhibited a gradual increment with the advance of tuberculosis. Thus, our data provide evidence that a Th0 cytokine pattern is predominant at the site of pulmonary tuberculosis. In conclusion, immunoparalysis status could not be observed in our patients with severe tuberculosis.  相似文献   

7.
The capacity of 12 cytokines to induce NO2- or H2O2 release from murine peritoneal macrophages was tested by using resident macrophages, or macrophages elicited with periodate, casein, or thioglycollate broth. Elevated H2O2 release in response to PMA was observed in resident macrophages after a 48-h incubation with IFN-gamma, TNF-alpha, TNF-beta, or CSF-GM. Of these, only IFN-gamma induced substantial NO2- secretion during the culture period. The cytokines inactive in both assays under the conditions tested were IL-1 beta, IL-2, IL-3, IL-4, IFN-alpha, IFN-beta, CSF-M, and transforming growth factor-beta 1. Incubation of macrophages with IFN-gamma for 48 h in the presence of LPS inhibited H2O2 production but augmented NO2- release, whereas incubation in the presence of the arginine analog NG-monomethylarginine inhibited NO2- release but not H2O2 production. Although neither TNF-alpha nor TNF-beta induced NO2- synthesis on its own, addition of either cytokine together with IFN-gamma increased macrophage NO2- production up to six-fold over that in macrophages treated with IFN-gamma alone. Moreover, IFN-alpha or IFN-beta in combination with LPS could also induce NO2- production in macrophages, as was previously reported for IFN-gamma plus LPS. These data suggest that: 1) tested as a sole agent, IFN-gamma was the only one of the 12 cytokines capable of inducing both NO2- and H2O2 release; 2) the pathways leading to secretion of H2O2 and NO2- are independent; 3) either IFN-gamma and TNF-alpha/beta or IFN-alpha/beta/gamma and LPS can interact synergistically to induce NO2- release.  相似文献   

8.
Most cytokines possess multiple biologic activities. This study was undertaken to investigate the effect of rIL-1 beta, -2, -3, -4 and -6, IFN-gamma, TNF-alpha, and granulocyte-macrophage (GM)-CSF on basophils from 16 donors and the amount of histamine released was compared with that by partially purified mononuclear cell-derived histamine-releasing factor (HRF) and anti-IgE. We found that only IL-3 and GM-CSF at relatively high doses (50 to 500 ng/ml) released small amounts of histamine (3 to 14%) from two allergic donors. In contrast, both HRF and anti-IgE released significant amounts of histamine from all donors. Other cytokines did not release any measurable quantity of histamine. Simultaneous addition of several cytokines to the basophils also failed to release histamine. IL-3, GM-CSF, and IL-1 can also release histamine at lower concentrations (less than 5 ng/ml) when incubated with basophils in the presence of D2O. Basophils from 6 out of 13 allergic donors released histamine in response to IL-3, whereas three donors responded to IL-1 beta and two responded to GM-CSF. The results of this study demonstrated that although IL-3 and GM-CSF release small amounts of histamine only from a select group of allergic patients, mononuclear cell-derived HRF is more potent in their action and release histamine from normals as well as allergic patients.  相似文献   

9.
Patients with the acquired immunodeficiency syndrome (AIDS) exhibit a variety of disorders of cellular immunity, including a deficient ability to generate cytotoxic T cells and depressed levels of natural killer (NK) cell activity. Interleukin 2 (IL 2) in vitro can markedly augment these depressed immune functions. Because IL 2 can induce the release of interferon-gamma (IFN-gamma) from normal peripheral blood lymphocytes (PBL), and because IFN-gamma may play a role in the regulation of NK cell activity, this study was performed to determine if the IL 2 enhancement of the NK cell activity of patients with AIDS was an IFN-gamma-dependent effect. PBL from eight healthy heterosexual donors and from nine patients with AIDS were studied for their ability to release IFN-gamma in response to IL 2 at a concentration of 100 U/ml. After 60 hr of culture, the PBL of all eight healthy donors produced IFN-gamma with a mean titer of 113 U/ml (range 40 to 320 U/ml). In contrast, the PBL from only two of nine patients with AIDS released measurable amounts of IFN-gamma (40 U/ml each) in response to IL 2 with a mean titer of 13.5 U/ml for all nine. Although the PBL from patients with AIDS were deficient in their capacity to produce IFN-gamma in response to 100 U/ml of IL 2, significant enhancement of NK cell activity could be obtained after only 1 hr of PBL treatment with 10 U/ml of IL 2, with an optimal NK enhancing effect occurring at doses of 50 to 100 U/ml of IL 2. The use of an anti-IFN-gamma monoclonal antibody resulted in complete neutralization of the IFN released from the normal PBL cultured with IL 2, but failed to inhibit the IL 2 enhancement of NK cell activity. Exogenous IFN-gamma exhibited different kinetics of enhancement of NK cell activity when compared to IL 2, requiring substantially more than 1 hr of pretreatment of PBL. These results indicate that the PBL from patients with AIDS usually do not release IFN-gamma when cultured with IL 2, and that IL 2 enhancement of the depressed NK cell activity of these patients may be an IFN-gamma-independent event. These results may have important implications for the therapy of AIDS.  相似文献   

10.
Recombinant-derived human interleukin 1 (IL1) alpha and beta and interferon gamma (IFN-gamma) each produced similar increases in rheumatoid synovial cell (RSC) glycolysis, as judged by increased values for glucose uptake, lactate production and cellular fructose 2,6-bisphosphate [Fru(2,6)P2]. Measurement of Fru(2,6)P2 proved to be the most sensitive parameter for an assessment of glycolysis: IL1 alpha, IL1 beta and IFN-gamma all produced a 3-6-fold increase in this metabolite whereas tumour necrosis factor (TNF alpha) was far less effective. Prostaglandin E production was stimulated predominantly by IL1 alpha and IL1 beta rather than by IFN-gamma or TNF alpha. When combinations of cytokines were examined the addition of IFN-gamma with either IL1 alpha, IL1 beta or murine IL1 produced a synergistic increase in cellular Fru(2,6)P2. The three forms of IL1 increased Fru(2,6)P2 via the same pathway, whereas IFN-gamma acted via a different mechanism. The increase in Fru(2,6)P2 in subcultured RSC produced by addition of medium from a primary culture exceeded the maximal effects of any of the single cytokines studied, suggesting the presence of a mixture of cytokines in the primary RSC culture medium.  相似文献   

11.
Human peripheral blood cells, when cultured in vitro, release bone-resorbing factors, which have been called osteoclast-activating factors (OAF) but remain unidentified. We showed previously that a monocyte product, similar to interleukin 1 (IL 1), is a powerful stimulator of bone resorption in vitro. However, the possibility remained that other immune cell products may contribute to OAF activity. We have therefore tested three recombinant cytokines; IL 1, interleukin 2 (IL 2), and interferon-gamma (IFN-gamma) for their activity in a neonatal mouse bone resorption assay. We report here that purified recombinant murine IL 1 is a potent and powerful stimulator of bone resorption in vitro, active over a concentration range of 0.14 to 33 U/ml (1.3 X 10(-12) to 3.1 X 10(-10) M). IL 1-stimulated bone resorption was unaffected by cyclooxygenase inhibition but was inhibited by calcitonin and IFN-gamma. IL 2 had no effect on bone resorption.  相似文献   

12.
In order to study the signal transduction mechanism of human endothelial cells (EC), the regulation of superoxide anion (O2-)release in EC has been investigated using the calcium ionophore A23187 and phorbol myristate acetate (PMA), a potential activator of the Ca2+ activated, phospholipid-dependent protein kinase, designated "protein kinase C." PMA enhanced O2- release from EC, and this enhancement occurred regardless of the presence or absence of extracellular Ca2+. A similar increase was produced by A23187; omission of extracellular Ca2+ prevented this increase. Simultaneous stimulation with PMA and A23187 produced a large increase in O2- release at submaximal concentrations of these agents, which, when added separately, caused minimal effects. These findings indicate that the activation of protein kinase C and mobilization of Ca2+ evoked by PMA and A23187 respectively are synergistically effective for eliciting a full physiological response of EC in the generation and release of O2-.  相似文献   

13.
Both the secretory and cytotoxic activity of natural killer (NK) cells are known to be regulated by such cytokines as interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). In the present study we have used the reverse hemolytic plaque assay to investigate either the direct effects of the protein kinase activator, phorbol myristate acetate (PMA), or exposure to recombinant human interleukins 2, 4, and 6 (IL-2, IL-4, and IL-6) tumour necrosis factor alpha (TNF-alpha) and basic fibroblast growth factor (bFGF) on the release of IFN-gamma by individual, immunoidentified NK cells isolated from peripheral blood. This sensitive immunoassay was adapted and coupled with immunocytochemistry not only to immunophenotype and enumerate cells secreting IFN-gamma in a given cell population, but also to quantify the amount of this cytokine released per individual cell. These studies have confirmed mononuclear cells with the morphology of large granular lymphocytes and the immunophenotype of CD3-/CD16+ NK cells to be the predominant source of spontaneously released IFN-gamma in vitro. In contrast to this, fewer than 2% of the CD3+ T cells secreted detectable levels of this cytokine during the assay, irrespective of the stimulus applied. Whilst TNF-alpha had no significant effect on IFN-gamma release by NK cells, a 6-hr exposure to IL-2 or PMA stimulated an increase in the amount secreted per single cell. Furthermore, bFGF and interleukins 4 and 6 elicited a marked, dose-dependent stimulation of IFN-gamma secretion by this cell type. However, exposure to these cytokines did not alter the number of cells capable of releasing detectable levels of IFN-gamma during the assay. These studies demonstrate that (i) both the spontaneous and stimulated release of IFN-gamma by NK cells can be visualized and quantified at the single-cell level using this sensitive immunoassay, and (ii) bFGF and interleukins 2, 4, and 6, but not TNF-alpha, are potent stimulants of IFN-gamma secretion by CD3-/CD16+ NK cells.  相似文献   

14.
15.
Leukotriene B4 (LTB4) has been shown to modulate lymphocyte responses in both a positive and a negative way, depending on the particular cell subsets it interacts with. Recent evidence also indicates that LTB4 can directly affect the production of cytokines such as interleukin 1 (IL 1) or interleukin 2 (IL 2) and interferon-gamma (IFN-gamma). In this report, we present evidence that human T cells pulsed with LTB4 modulate IL 1 production by human monocytes by secreting IFN-gamma. In fact, we found that LTB4-pulsed T cells were capable of inducing a suppression of lymphocyte proliferation if allowed to interact with monocytes, but that this suppression was reversed to an enhancing effect when monocytes were treated with the cyclooxygenase inhibitor indomethacin. Furthermore, LTB4-pulsed T cells released a soluble factor that would mediate both effects. This factor was found to be IFN-gamma, because affinity-purified IFN-gamma could reproduce the effects, and a rabbit polyclonal anti-serum to human IFN-gamma could block the activities of supernatants from LTB4-pulsed T cells. LTB4 was also shown to enhance IFN-gamma production by T4+ T cells and to inhibit IFN-gamma production by T8+ T cells. These results suggest that LTB4 may regulate immune cell functions by inducing IFN-gamma production by T4+ cells.  相似文献   

16.
The first step in the migration of lymphocytes out of the blood is adherence of lymphocytes to endothelial cells (EC) in the postcapillary venule. It is thought that in inflammatory reactions cytokines activate the endothelium to promote lymphocyte adherence and migration into the inflammatory site. Injection of IFN-gamma, IFN-alpha/beta, and TNF-alpha into the skin of rats stimulated the migration of small peritoneal exudate lymphocytes (sPEL) into the injection site, and these cytokines mediated lymphocyte recruitment to delayed-type hypersensitivity, sites of virus injection, and in part to LPS. The effect of cytokines on lymphocyte adherence to rat microvascular EC was examined. IFN-gamma, IFN-alpha/beta, IL-1, TNF-alpha, and TNF-beta increased the binding of small peritoneal exudate lymphocyte (sPEL) to EC. IFN-gamma was more effective and stimulated adherence at much lower concentrations than the other cytokines. IL-2 did not increase lymphocyte adherence. LPS strongly stimulated lymphocyte binding. Treatment of EC, but not sPEL, enhanced adhesion, and 24 h of treatment with IFN-gamma and IL-1 induced near maximal adhesion. Lymph node lymphocytes, which migrate poorly to inflammatory sites, adhered poorly to unstimulated and stimulated EC, whereas sPEL demonstrated significant spontaneous adhesion which was markedly increased by IFN-gamma, IL-1, and LPS. Spleen lymphocytes showed an intermediate pattern of adherence. Combinations of IFN-gamma and TNF-alpha were additive in stimulating sPEL-EC adhesion. Depletion of sPEL and spleen T cells by adherence to IFN-gamma stimulated EC decreased the in vivo migration of the lymphocytes to skin sites injected with IFN-gamma, IFN-alpha/beta, TNF-alpha, poly I:C, LPS, and to delayed-type hypersensitivity reactions by 50%, and significantly increased the migration of these cells to normal lymph nodes, as compared to unfractionated lymphocytes. Thus the cytokines and lymphocytes involved in migration to cutaneous inflammation in the rat stimulate lymphocyte adhesion to rat EC in vitro, and IFN-gamma stimulated EC appear to promote the selective adhesion of inflammatory site-seeking lymphocytes.  相似文献   

17.
Neovascularization, a common occurrence in chronic inflammatory lesions, requires endothelial cell (EC) proliferation. Because this form of inflammation is often mediated by immunologically generated cytokines, the effects of such cytokines on human umbilical vein EC proliferation in vitro were investigated. Low concentrations of recombinant interferon gamma (rIFN-gamma) (10-100 U/ml), but not a higher concentration (1,000 U/ml), enhanced both basal and endothelial cell growth factor (ECGF)-stimulated EC proliferation. Recombinant interleukin 1 (rIL-1) and recombinant tumor necrosis factor-alpha (rTNF) had minor effects on basal EC proliferation, but significant inhibition was observed in the presence of ECGF. A combination of rIFN-gamma and rTNF induced marked suppression of EC proliferation, which appeared to be due to a cytotoxic effect on the EC, as demonstrated by 51Cr release. In contrast, the combination of rIFN-gamma and rIL-1 had only an additive effect on EC proliferation, with no evidence of cytotoxicity. These results suggest that cytokines have important regulatory roles in local vascular proliferation. These effects varied not only with the individual cytokine, but also with the combination of cytokines used. The most striking effects were 1) the stimulation of proliferation by IFN-gamma at a low concentration and 2) the inhibition by both rIL-1 and rTNF of ECGF-stimulated proliferation.  相似文献   

18.
Effective host defense against Mycobacterium tuberculosis requires the induction of Th1 cytokine responses. We investigated the regulated expression and functional role of the inducible costimulator (ICOS), a receptor known to regulate Th cytokine production, in the context of human tuberculosis. Patients with active disease, classified as high responder (HR) or low responder (LR) patients according to their in vitro T cell responses against the Ag, were evaluated for T cell expression of ICOS after M. tuberculosis-stimulation. We found that ICOS expression significantly correlated with IFN-gamma production by tuberculosis patients. ICOS expression levels were regulated in HR patients by Th cytokines: Th1 cytokines increased ICOS levels, whereas Th2-polarizing conditions down-regulated ICOS in these individuals. Besides, in human polarized Th cells, engagement of ICOS increased M. tuberculosis IFN-gamma production with a magnitude proportional to ICOS levels on those cells. Moreover, ICOS ligation augmented Ag-specific secretion of the Th1 cytokine IFN-gamma from responsive individuals. In contrast, neither Th1 nor Th2 cytokines dramatically affected ICOS levels on Ag-stimulated T cells from LR patients, and ICOS activation did not enhance IFN-gamma production. However, simultaneous activation of ICOS and CD3 slightly augmented IFN-gamma secretion by LR patients. Together, our data suggest that the regulation of ICOS expression depends primarily on the response of T cells from tuberculosis patients to the specific Ag. IFN-gamma released by M. tuberculosis-specific T cells modulates ICOS levels, and accordingly, ICOS ligation induces IFN-gamma secretion. Thus, ICOS activation may promote the induction of protective Th1 cytokine responses to intracellular bacterial pathogens.  相似文献   

19.
The role of thymic epithelium in T cell development has given rise to a number of studies, but less information is available concerning the factors regulating thymic epithelial cells (TEC) themselves. Several cytokines, natural or recombinant, were investigated for their effects on human TEC proliferation. This study presents evidence for the first time that human recombinant interleukin 1 (IL1) and IL1-containing mixed cytokine preparations induced DNA synthesis of TEC as measured in a 48-hr stimulation assay. The effects of IL1 were dose dependent and sustained in time. The following recombinant cytokines, IL2, IL3, IL4, interferon-gamma (IFN-gamma), IFN-alpha, tumor necrosis factor-alpha (TNF alpha), and TNF beta, as well as thymosin fraction 5 and Escherichia coli lipopolysaccharide (LPS), were not found to modify TEC proliferation but IFN-gamma and TNF alpha enhanced the effects of IL1. We also report that IL1 induced a profound change in the morphology of TEC. Our observations suggest that TEC are targets for the action of cytokines and emphasize the important role played by IL1 within the thymus.  相似文献   

20.
The release of immune or gamma interferon (IFN-gamma) by major histocompatibility complex (MHC)-restricted pigeon cytochrome c-specific Lyt 1+2-, interleukin 2 (IL 2)-producing proliferative T cell clones when cultured with antigen and antigen-presenting cells (APC) is a sensitive measure of the state of activation of the cell. In general, the fine specificity of T cell activation was similar when activation was measured either by IFN-gamma production or by proliferation. In response to antigen and the correct Ia molecule, the T cell clones produced both high titered IFN-gamma and a strong proliferative response. However, IFN-gamma production and the degree of proliferation of the T cell clones differed at high antigen concentrations. As antigen concentration increased, the magnitude of proliferation became submaximal whereas the IFN-gamma response became maximal suggesting that IFN-gamma produced by the cells might act as an autoregulatory molecule inhibiting the proliferative response. Stimulating the T cell to divide via its IL 2 receptor by adding exogenous IL 2 produced high levels of proliferation but only low titers of IFN-gamma activity. In addition, irradiation of the clone eliminated the IFN-gamma release induced by IL 2 but did not affect the IFN-gamma release induced by antigen and Ia. Thus proliferation is not essential for IFN-gamma production and unlike antigen and Ia, IL 2 functions predominantly as a proliferative signal and not as a signal for factor release. Two T cell clones showed a dissociation of IFN-gamma production and proliferation. In one case, a clone that proliferated in response to both allogeneic and antigenic stimuli released IFN-gamma in response to antigen but failed to produce IFN-gamma in response to the allogeneic stimulus. A second clone that showed a strong proliferative response to pigeon cytochrome c but no proliferative response to a species variant of cytochrome c, tobacco hornworm moth (THWM) cytochrome c, produced IFN-gamma when stimulated with either of these antigens. Thus, the sensitivity of detecting activation of T cell clones as measured by the release of an individual lymphokine varies from one clone to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号