首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen. One of its major toxins, ExoS, is translocated into eukaryotic cells by a type III secretion pathway. ExoS is a dual function enzyme that affects two different Ras-related GTP binding proteins. The C-terminus inactivates Ras through ADP ribosylation, while the N-terminus inactivates Rho proteins through its GTPase activating protein (GAP) activity. Here we have determined the three-dimensional structure of a complex between Rac and the GAP domain of ExoS in the presence of GDP and AlF3. Composed of approximately 130 residues, this ExoS domain is the smallest GAP hitherto described. The GAP domain of ExoS is an all-helical protein with no obvious structural homology, and thus no recognizable evolutionary relationship, with the eukaryotic RhoGAP or RasGAP fold. Similar to other GAPs, ExoS downregulates Rac using an arginine finger to stabilize the transition state of the GTPase reaction, but the details of the ExoS-Rac interaction are unique. Considering the intrinsic resistance of P. aeruginosa to antibiotics, this might open up a new avenue towards blocking its pathogenicity.  相似文献   

2.
Pseudomonas aeruginosa, a significant cause of human morbidity and mortality, uses a type 3 secretion system (T3SS) to inject effector toxins into host cells. We previously reported that P. aeruginosa uses ADP-ribosyltransferase (ADPr) activity of the T3SS effector ExoS for intracellular replication. T3SS translocon (ΔpopB)-mutants, which can export, but not translocate effectors across host membranes, retained intracellular replication. We hypothesized that secreted effectors mediate translocon-independent intracellular replication. Translocon mutants of PAO1 lacking one or more of its three known effectors (ExoS, ExoT and ExoY) were used. All translocon mutants, irrespective of effectors expressed, localized to intracellular vacuoles. Translocon-effector null mutants and translocon-exoS mutants showed defective intracellular replication. Mutants in exoT, exoY or both replicated as efficiently as translocon mutants expressing all effectors. Complementation of translocon-effector null mutants with native exoS or a membrane localization domain mutant of exoS, but not the ADPr mutant exoS (pUCPexoSE381D), restored intracellular replication, correlating with increased bacteria per vacuole. Thus, P. aeruginosa is capable of intravacuolar replication that requires ExoS ADPr activity, but not the translocon. These data suggest that T3SS effectors can participate in pathogenesis without translocon-mediated translocation across host membranes, and that intracellular bacteria can contribute to P. aeruginosa pathogenesis within epithelial cells.  相似文献   

3.
Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS   总被引:4,自引:0,他引:4  
Pseudomonas aeruginosa Exoenzyme S (ExoS) is a bifunctional type-III cytotoxin. The N terminus possesses a Rho GTPase-activating protein (GAP) activity, whereas the C terminus comprises an ADP-ribosyltransferase domain. We investigated whether the ADP-ribosyltransferase activity of ExoS influences its GAP activity. Although the ADP-ribosyltransferase activity of ExoS is dependent upon FAS, a 14-3-3 family protein, factor-activating ExoS (FAS) had no influence on the activity of the GAP domain of ExoS (ExoS-GAP). In the presence of NAD and FAS, the GAP activity of full-length ExoS was reduced about 10-fold, whereas NAD and FAS did not affect the activity of the ExoS-GAP fragment. Using [(32)P]NAD, ExoS-GAP was identified as a substrate of the ADP-ribosyltransferase activity of ExoS. Site-directed mutagenesis revealed that auto-ADP-ribosylation of Arg-146 of ExoS was crucial for inhibition of GAP activity in vitro. To reveal the auto-ADP-ribosylation of ExoS in intact cells, tetanolysin was used to produce pores in the plasma membrane of Chinese hamster ovary (CHO) cells to allow the intracellular entry of [(32)P]NAD, the substrate for ADP-ribosylation. After a 3-h infection of CHO cells with Pseudomonas aeruginosa, proteins of 50 and 25 kDa were preferentially ADP-ribosylated. The 50-kDa protein was determined to be auto-ADP-ribosylated ExoS, whereas the 25-kDa protein appeared to represent a group of proteins that included Ras.  相似文献   

4.
Pseudomonas aeruginosa delivers exoenzyme S (ExoS) into the intracellular compartment of eukaryotic cells via a type III secretion pathway. Intracellular delivery of ExoS is cytotoxic for eukaryotic cells and has been shown to ADP-ribosylate Ras in vivo and uncouple a Ras-mediated signal transduction pathway. Functional mapping has localized the FAS-dependent ADP-ribosyltransferase domain to the carboxyl-terminus of ExoS. A transient transfection system was used to examine cellular responses to the amino-terminal 234 amino acids of ExoS (DeltaC234). Intracellular expression of DeltaC234 elicited the rounding of Chinese hamster ovary (CHO) cells and the disruption of actin filaments in a dose-dependent manner. Expression of DeltaC234 did not inhibit the expression of two independent reporter proteins, GFP and luciferase, or induce trypan blue uptake, which indicated that expression of DeltaC234 was not cytotoxic to CHO cells. Carboxyl-terminal deletion proteins of DeltaC234 were less efficient in the elicitation of CHO cell rounding than DeltaC234. Cytoskeleton rearrangement elicited by DeltaC234 was blocked and reversed by the addition of cytotoxic necrotizing factor 1 (CNF-1). CNF-1 catalyses the deamidation of Gln-63 of members of the Rho subfamily of small-molecular-weight GTP-binding proteins, resulting in protein activation. This implies a role for small-molecular-weight GTP-binding proteins in the disruption of actin by DeltaC234. Together, these data identify ExoS as a cytotoxin that possesses two functional domains. Intracellular expression of the amino-terminal domain of ExoS elicits the disruption of actin, while expression of the carboxyl-terminal domain of ExoS possesses FAS-dependent ADP-ribosyltransferase activity and is cytotoxic to eukaryotic cells.  相似文献   

5.
Pseudomonas aeruginosa is an important nosocomial pathogen that can cause acute and chronic infection, particularly of the respiratory system. Pyocyanin is a major P. aeruginosa virulence factor that displays redox activity and induces oxidative stress in cellular systems. The effect of pyocyanin on replicating human pulmonary epithelial (A549) cells was investigated. Cells were exposed to pyocyanin for 24 h and their subsequent growth and development were followed for 7 days. Pyocyanin (5-10 microM) arrested cell growth and resulted in the development of a morphological phenotype consistent with cellular senescence, that is, an enlarged and flattened appearance. The senescent nature of these cells was supported by positive staining for increased lysosomal content and senescence-associated beta-galactosidase activity. All cells treated with pyocyanin (10 microM) converted to the senescent phenotype, which remained stable for up to 7 days. Exposure to pyocyanin at 25 microM or greater resulted in cell death due to apoptosis. A549 cells exposed to pyocyanin generated hydrogen peroxide in a dose-dependent manner and the senescence-inducing effect of pyocyanin was inhibited by the antioxidant, glutathione, suggesting the involvement of reactive oxygen species. The induction of premature cellular senescence by redox-active bacterial toxins may be a hitherto unrecognized aspect of infection pathology and a limiting factor in the tissue repair response to infection.  相似文献   

6.
Hospital-acquired pneumonia is associated with high rates of morbidity and mortality, and dissemination to the bloodstream is a recognized risk factor for particularly poor outcomes. Yet the mechanism by which bacteria in the lungs gain access to the bloodstream remains poorly understood. In this study, we used a mouse model of Pseudomonas aeruginosa pneumonia to examine this mechanism. P. aeruginosa uses a type III secretion system to deliver effector proteins such as ExoS directly into the cytosol of eukaryotic cells. ExoS, a bi-functional GTPase activating protein (GAP) and ADP-ribosyltransferase (ADPRT), inhibits phagocytosis during pneumonia but has also been linked to a higher incidence of dissemination to the bloodstream. We used a novel imaging methodology to identify ExoS intoxicated cells during pneumonia and found that ExoS is injected into not only leukocytes but also epithelial cells. Phagocytic cells, primarily neutrophils, were targeted for injection with ExoS early during infection, but type I pneumocytes became increasingly injected at later time points. Interestingly, injection of these pneumocytes did not occur randomly but rather in discrete regions, which we designate ““fields of cell injection” (FOCI). These FOCI increased in size as the infection progressed and contained dead type I pneumocytes. Both of these phenotypes were attenuated in infections caused by bacteria secreting ADPRT-deficient ExoS, indicating that FOCI growth and type I pneumocyte death were dependent on the ADPRT activity of ExoS. During the course of infection, increased FOCI size was associated with enhanced disruption of the pulmonary-vascular barrier and increased bacterial dissemination into the blood, both of which were also dependent on the ADPRT activity of ExoS. We conclude that the ADPRT activity of ExoS acts upon type I pneumocytes to disrupt the pulmonary-vascular barrier during P. aeruginosa pneumonia, leading to bacterial dissemination.  相似文献   

7.
ExoS is a type III cytotoxin of Pseudomonas aeruginosa, which modulates two eukaryotic signalling pathways. The N-terminus (residues 1-234) is a GTPase activating protein (GAP) for RhoGTPases, while the C-terminus (residues 232-453) encodes an ADP-ribosyltransferase. Utilizing a series of N-terminal deletion peptides of ExoS and an epitope-tagged full-length ExoS, two independent domains have been identified within the N-terminus of ExoS that are involved in intracellular localization and expression of GAP activity. N-terminal peptides of ExoS localized to the perinuclear region of CHO cells, and a membrane localization domain was localized between residues 36 and 78 of ExoS. The capacity to elicit CHO cell rounding and express GAP activity resided within residues 90-234 of ExoS, which showed that membrane localization was not required to elicit actin reorganization. ExoS was present in CHO cells as a full-length form, which fractionated with membranes, and as an N-terminally processed fragment, which localized to the cytosol. Thus, ExoS localizes in eukaryotic cells to the perinuclear region and is processed to a soluble fragment, which possesses both the GAP and ADP-ribosyltransferase activities.  相似文献   

8.
Type III secretion is used by many gram-negative bacterial pathogens to directly deliver protein toxins (effectors) into targeted host cells. In all cases, secretion of effectors is triggered by host cell contact, although the mechanism is unclear. In Pseudomonas aeruginosa, expression of all type III secretion-related genes is up-regulated when secretion is triggered. We were able to visualize this process using a green fluorescent protein reporter system and to use it to monitor the ability of bacteria to trigger effector secretion on cell contact. Surprisingly, the action of one of the major type III secreted effectors, ExoS, prevented triggering of type III secretion by bacteria that subsequently attached to cells, suggesting that triggering of secretion is feedback regulated. Evidence is presented that translocation (secretion of effectors across the host cell plasma membrane) of ExoS is indeed self-regulated and that this inhibition of translocation can be achieved by either of its two enzymatic activities. The translocator proteins PopB, PopD, and PcrV are secreted via the type III secretion system and are required for pore formation and translocation of effectors across the host cell plasma membrane. Here we present data that secretion of translocators is in fact not controlled by calcium, implying that triggering of effector secretion on cell contact represents a switch in secretion specificity, rather than a triggering of secretion per se. The requirement for a host cell cofactor to control effector secretion may help explain the recently observed phenomenon of target cell specificity in both the Yersinia and P. aeruginosa type III secretion systems.  相似文献   

9.
10.
Pseudomonas aeruginosa Exoenzyme S (ExoS) is a bifunctional type-III cytotoxin. The N-terminus (residues 1-232) possesses Rho GTPase-activating (GAP) activity, while the C-terminus (residues 233-453) comprises an ADP-ribosyltransferase domain. Amino acid residues 51-72 of ExoS are involved in membrane binding and aggregation, which has complicated purification schemes. Here, it is reported on the expression, purification, and characterization of two recombinant forms of ExoS that lack this membrane-binding domain, designated rExoS78-453 and rExoSdelta51-72. Purification of these forms was achieved using sequential NTA/Ni(2+)-affinity, gel filtration, and anion-exchange chromatography. Both forms of ExoS possessed Rho GAP activity and ADP-ribosyltransferase activity comparable to wild-type ExoS. Mass spectrometry showed that rExoS78-453 and rExoSdelta51-72 had molecular masses similar to their predicted molecular masses.  相似文献   

11.
Pseudomonas aeruginosa ExoS is a bifunctional type III-secreted cytotoxin. The N terminus (amino acids 96-233) encodes a GTPase-activating protein activity, whereas the C terminus (amino acids 234-453) encodes a factor-activating ExoS-dependent ADP-ribosyltransferase activity. The GTPase-activating protein activity inactivates the Rho GTPases Rho, Rac, and Cdc42 in cultured cells and in vitro, whereas the ADP-ribosylation by ExoS is poly-substrate-specific and includes Ras as an early target for ADP-ribosylation. Infection of HeLa cells with P. aeruginosa producing a GTPase-activating protein-deficient form of ExoS rounded cells, indicating the ADP-ribosyltransferase domain alone is sufficient to elicit cytoskeletal changes. Examination of substrates modified by type III-delivered ExoS identified a 70-kDa protein as an early and predominant target for ADP-ribosylation. Matrix-assisted laser desorption ionization mass spectroscopy identified this protein as moesin, a member of the ezrin/radixin/moesin (ERM) family of proteins. ExoS ADP-ribosylated recombinant moesin at a linear velocity that was 5-fold faster and with a K(m) that was 2 orders of magnitude lower than Ras. Moesin homologs ezrin and radixin were also ADP-ribosylated, indicating the ERMs collectively represent high affinity targets of ExoS. Type III delivered ExoS ADP-ribosylated moesin and ezrin (and/or radixin) in cultured HeLa cells. The ERM proteins contribute to cytoskeleton dynamics, and the ability of ExoS to ADP-ribosylate the ERM proteins links ADP-ribosylation with the cytoskeletal changes associated with ExoS intoxication.  相似文献   

12.
Study of dynamics of formation of spontaneous and mitogen (phytohemagglutinin - PHA, concanavalin A - ConA)-activated blast lymphocytes showed increase of number of transforming T-lymphocytes under the influence of Enterobacter cloacae thermolabile enterotoxin. Itwas noted that PHA mainly stimulated mitosis of T-cell population, ConA - of natural killers, whereas enterotoxin stimulated mitotic activity of both cell types.  相似文献   

13.
Locus of the Pseudomonas aeruginosa toxin A gene.   总被引:13,自引:6,他引:7       下载免费PDF全文
The gene for Pseudomonas aeruginosa toxin A has been mapped in the late region of the chromosome of strain PAO. Strain PAO-PR1, which produces parental levels of toxin A antigen that is enzymatically inactive and nontoxic, was used as the donor for R68.45 plasmid-mediated genetic exchange. Strain PAO-PR1 (toxA1) was mated with toxin A-producing strains, and exconjugates for selected prototrophic markers were tested for the transfer of toxA1. The toxA1 gene was located between cnu-9001 and pur-67 at approximately 85 min on the PAO chromosome.  相似文献   

14.
Pseudomonas aeruginosa is a leading cause of blinding corneal ulcers worldwide. To determine the role of type III secretion in the pathogenesis of P. aeruginosa keratitis, corneas of C57BL/6 mice were infected with P. aeruginosa strain PAO1 or PAK, which expresses ExoS, ExoT, and ExoY, but not ExoU. PAO1- and PAK-infected corneas developed severe disease with pronounced opacification and rapid bacterial growth. In contrast, corneas infected with ΔpscD or ΔpscJ mutants that cannot assemble a type III secretion system, or with mutants lacking the translocator proteins, do not develop clinical disease, and bacteria are rapidly killed by infiltrating neutrophils. Furthermore, survival of PAO1 and PAK strains in the cornea and development of corneal disease was impaired in ΔexoS, ΔexoT, and ΔexoST mutants of both strains, but not in a ΔexoY mutant. ΔexoST mutants were also rapidly killed in neutrophils in vitro and were impaired in their ability to promote neutrophil apoptosis in vivo compared with PAO1. Point mutations in the ADP ribosyltransferase (ADPR) regions of ExoS or ExoT also impaired proapoptotic activity in infected neutrophils, and exoST(ADPR-) mutants replicated the ΔexoST phenotype in vitro and in vivo, whereas mutations in rho-GTPase-activating protein showed the same phenotype as PAO1. Together, these findings demonstrate that the pathogenesis of P. aeruginosa keratitis in ExoS- and ExoT-producing strains is almost entirely due to their ADPR activities, which subvert the host response by targeting the antibacterial activity of infiltrating neutrophils.  相似文献   

15.
Faudry E  Vernier G  Neumann E  Forge V  Attree I 《Biochemistry》2006,45(26):8117-8123
Type III secretion/translocation systems are essential actors in the pathogenicity of Gram-negative bacteria. The injection of bacterial toxins across the host cell plasma membranes is presumably accomplished by a proteinaceous structure, the translocon. In vitro, Pseudomonas aeruginosa translocators PopB and PopD form ringlike structures observed by electron microscopy. We demonstrate here that PopB and PopD are functionally active and sufficient to form pores in lipid vesicles. Furthermore, the two translocators act in synergy to promote membrane permeabilization. The size-based selectivity observed for the passage of solutes indicates that the membrane permeabilization is due to the formation of size-defined pores. Our results provide also new insights into the mechanism of translocon pore formation that may occur during the passage of toxins from the bacterium into the cell. While proteins bind to lipid vesicles equally at any pH, the kinetics of membrane permeabilization accelerate progressively with decreasing pH values. Electrostatic interactions and the presence of anionic lipids were found to be crucial for pore formation whereas cholesterol did not appear to play a significant role in functional translocon formation.  相似文献   

16.
17.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen of great medical relevance. One of its major toxins, exoenzyme S (ExoS), is a dual function protein with a C-terminal Ras-ADP-ribosylation domain and an N-terminal GTPase activating protein (GAP) domain specific for Rho-family proteins. We report here the three-dimensional structure of the N-terminal domain of ExoS determined by X-ray crystallography to 2.4 A resolution. Its fold is all helical with a four helix bundle core capped by additional irregular helices. Loops that are known to interact with Rho-family proteins show very large mobility. Considering the importance of ExoS in Pseudomonas pathogenicity, this structure could be of interest for drug targeting.  相似文献   

18.
Waltho, Judith A. (University of Melbourne, Victoria, Australia), and B. W. Holloway. Suppression of fluorophenylalanine resistance by mutation to streptomycin resistance in Pseudomonas aeruginosa. J. Bacteriol. 92:35-42. 1966.-Fluorophenylalanine-resistant mutants (fpa-r) of Pseudomonas aeruginosa have been isolated. By cotransduction analysis, the mutations were shown to have at least two chromosomal locations. One locus (fpaA) showed linkage to three other markers, str, try-3bi, and arg-3, and the order of these four linked markers was found to be try-3bi, arg-3, fpaA, str. The linkage relationships of the other fpa loci are not yet known. The phenotypic expression of resistance at the fpaA locus can be suppressed by mutation of the str locus from str-s to str-r, whereas that at an unlinked fpa locus cannot.  相似文献   

19.
20.
P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号