首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formate dehydrogenase (FDHF) of Escherichia coli is a selenocysteine-containing protein that occurs as a component of the formate-hydrogen lyase complex. The gene encoding this 80 kd polypeptide contains a TGA codon in the open reading frame. Several indirect lines of evidence showed earlier that the selenocysteine residue in the protein is inserted co-translationally in a TGA (UGA) dependent process. Direct proof that the selenocysteine is present in the polypeptide in the position corresponding to TGA as predicted from the gene sequence was obtained by automated amino acid sequence analysis of a 75Se-containing peptide isolated from the protein. Construction of a fusion gene comprising a small segment of the fdhF gene linked to the lacZ gene as reporter greatly facilitated isolation of the selenocysteine-containing protein. Subsequent cleavage of this isolated gene product with endoproteinase Asp-N gave rise to an easily purified small selenocysteine-containing peptide that was amenable to amino acid sequence analysis.  相似文献   

2.
An obligate methyltroph Methylomonas methylovora oxidized methylamine, formaldehyde, and formate. Enzymes oxidizing these substrates were detected in a cell-free system. Phenazine methosulfate-linked methylamine dehydrogenase was purified 21-fold. The enzyme had optimum activity at pH 7.5 and was stable at 60 degrees C for 5 min. The enzyme activity was inhibited by parachloromercuric benzoate, isonicotinic acid hydrazide, mercuric chloride, and sodium borate.  相似文献   

3.
The formate dehydrogenase from the yeast Pichia pastoris IFP 206 was purified to homogeneity. The protein showed a molecular weight of 68,000 daltons and was composed of two identical subunits. Its amino acid composition was similar to those of other formate dehydrogenases and was characterized by a high content of acidic residues. The N-terminal end of the molecule was probably blocked.

The enzyme activity was NAD+ dependent (NADP+ could not replace NAD+). Its optimum temperature was 47°C and the activation energy 10.8 kcal/mol. The enzyme was active from pH 3.5 to 10.5 with a maximum at pH 7.5. The Michaelis constant for NAD+ and formate were respectively 0.27 and 15mM. The purified enzyme had no S-formylglutathione hydrolase activity, strongly suggesting that the true substrate was formate. NADH, cyanide and azide were strong inhibitors of the enzyme.  相似文献   

4.
An NAD-linked formate dehydrogenase (EC 1.2.1.2.) from methanol-grown Pichia pastoris NRRL Y-7556 has been purified. The purification procedure involved ammonium sulfate fractionation, hollow-fiber H1P10 filtration, ion-exchange chromatography, and gel filtration. Both dithiothreitol (10 mm) and glycerol (10%) were required for stability of the enzyme during purification. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis and by sedimentation pattern in an ultracentrifuge. The enzyme has a molecular weight of 94,000 and consists of two subunits of identical molecular weight. Formate dehydrogenase catalyzes specifically the oxidation of formate. No other compounds tested can replace NAD as the electron acceptor. The Michaelis constants were 0.14 mm for NAD and 16 mm for formate (pH 7.0, 25 °C). Optimum pH and temperature for formate dehydrogenase activity were around 6.5–7.5 and 20–25 °C, respectively. Amino acid composition of the enzyme was also studied. Antisera prepared against the purified enzyme from P. pastoris NRRL Y-7556 form precipitin bands with isofunctional enzymes from different strains of methanol-grown yeasts, but not bacteria, on immunodiffusion plates. Immunoglobulin fraction prepared against the enzyme from yeast strain Y-7556 inhibits the catalytic activity of the isofunctional enzymes from different strains of methanol-grown yeasts.  相似文献   

5.
Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.  相似文献   

6.
Bacillus sp. RK9 was isolated from soil and produced a constitutive polygalacturonate lyase. Production of the enzyme required the presence of complex nitrogen (peptone and yeast extract). Highest activity was obtained with an initial pH of 9.7. The organism was alkalophilic. No growth occurred below pH 7.5. The enzyme was purified by salt precipitation and diethylaminoethyl (DEAE) cellulose ion-exchange chromatography. The pH optimum for activity was 10.0 in 0.01 M glycine-NaOH buffer. Calcium alone, of divalent cations, activated the enzyme by 2.9-fold. Complete inhibition of enzyme activity was achieved by 1 mM ethylenediaminetetraacetic acid (EDTA). Hydrolysis of substrate occurred in a random fashion and the enzyme was 50% more active towards acid soluble pectic acid (ASPA) than towards sodium polypectate.  相似文献   

7.
The nicotinamide adenine dinucleotide phosphate (NADP)-dependent formate dehydrogenase in Clostridium thermoaceticum used, in addition to its natural electron acceptor, methyl and benzyl viologen. The enzyme was purified to a specific activity of 34 (micromoles per minute per milligram of protein) with NADP as electron acceptor. Disc gel electrophoresis of the purified enzyme yielded two major and two minor protein bands, and during centrifugation in sucrose gradients two components of apparent molecular weights of 270,000 and 320,000 were obtained, both having formate dehydrogenase activity. The enzyme preparation catalyzed the reduction of riboflavine 5'-phosphate flavine adenine dinucleotide and methyl viologen by using reduced NADP as a source of electrons. It also had reduced NADP oxidase activity. The enzyme was strongly inhibited by cyanide and ethylenediaminetetraacetic acid. It was also inhibited by hypophosphite, an inhibition that was reversed by formate. Sulfite inhibited the activity with NADP but not with methyl viologen as acceptor. The apparent K(m) at 55 C and pH 7.5 for formate was 2.27 x 10(-4) M with NADP and 0.83 x 10(-4) with methyl viologen as acceptor. The apparent K(m) for NADP was 1.09 x 10(-4) M and for methyl viologen was 2.35 x 10(-3) M. NADP showed substrate inhibition at 5 x 10(-3) M and higher concentrations. With NADP as electron acceptor, the enzyme had a broad pH optimum between 7 and 9.5. The apparent temperature optimum was 85 C. In the absence of substrates, the enzyme was stable at 70 C but was rapidly inactivated at temperatures above 73 C. The enzyme was very sensitive to oxygen but was stabilized by thiol-iron complexes and formate.  相似文献   

8.
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.  相似文献   

9.
Six fdn mutants of Salmonella typhimurium defective in the formation of nitrate reductase-linked formate dehydrogenase (FDHN) but capable of producing both the hydrogenase-linked formate dehydrogenase (FDHH) and nitrate reductase were characterized. Results of phage P22 transduction experiments indicated that there may be three fdn genes located on the metE-metB chromosomal segment and distinct from all previously identified fdh and chl loci. All six FDHH+ FDHN- mutants were found to make FDHN enzyme protein which was indistinguishable from that of the wild type in electrophoretic studies. However, the results of the spectral studies indicated that all six mutants were defective in the anaerobic cytochrome b559 associated with FDHN. All contained the cytochrome b559 associated with nitrate reductase in amounts equal to or greater than the wild type. The results of the transduction experiments also indicated that the metE- metB segment of the Salmonella chromosome resembles that of Escherichia coli more than was originally thought.  相似文献   

10.
Localized mutagenesis was used to obtain rha-linked mutations in Salmonella typhimurium, resulting in defects in the nitrate reductase-linked formate dehydrogenase (FDHN). The fdn mutants obtained fell into two groups which differed in several respects. Group I isolates lacked FDHN activity under all conditions examined and exhibited wild-type levels of the hydrogenase-linked formate dehydrogenase (FDHH). Group II isolates appeared defective in FDHN only when freshly prepared extracts were assayed; restoration of both FDHN and formate-nitrate reduction activity occurred on incubation of extracts for 2 to 3 h. Protease inhibitors prevented restoration. Group II isolates were also characterized by a conditional FDHH activity; this activity was absent unless the growth medium designed to optimize wild-type FDHH was altered either by lowering glucose concentration or by adding thiosulfate. Cotransduction of fdn with rha ranged from 4 to 22% for the group I isolates and from 20 to 40% for the group II isolates. Temperature-sensitive isolates from both groups synthesized FDHN activity with altered thermostability. In vitro complementation occurred in mixed extracts of amber mutants of the two respective classes. The results are consistent with two distinct rha-linked fdn genes, for which we suggest using the designations fdnB (group I) and fdnC (group II).  相似文献   

11.
从类芽胞杆菌Paenibacillus sp.WZ008的发酵上清液中纯化得到一个高活力碱性果胶裂解酶,经SDS-PAGE电泳估算其亚基相对分子质量为4.5×104。通过对该酶进行酶学性质研究发现:该酶能催化裂解果胶酸、低酯果胶和高酯果胶;酶催化反应最适温度范围为55~60℃,最适pH为9.6,在最适条件下以低酯果胶为底物酶的比酶活达3 021.6 U/mg;Ca2+能增强该酶的活力,而Mn2+,Ba2+和EDTA强烈抑制该酶活力;当没有Ca2+存在时,高度酯化的果胶是该酶的最适底物,在4 mmol/L Ca2+存在时,该酶以果胶酸为底物比酶活最高(25 467 U/mg)。该酶N端序列比对分析发现与类芽胞杆菌Paenibacillus amylolyticus strain 27c64果胶裂解酶高度同源。  相似文献   

12.
13.
从海洋中分离的弧菌QY102褐藻胶裂解酶的纯化和性质研究   总被引:5,自引:1,他引:5  
从马尾藻(Sargassum)表面分离到一株产生高效胞外褐藻胶裂解酶的海洋弧菌(Vibrio sp.) QY102。以褐藻胶为唯一碳源发酵培养后,发酵液上清通过0.22μm滤膜过滤、DEAESepharose离子交换和Superdex75凝胶过滤得到电泳纯的褐藻胶裂解酶。酶的性质研究表明:其分子量约为28.5kD(SDSPAGE),反应最适温度为40℃,最适pH为7.1,Ca2+、Mg2+对酶活有促进作用,而Ni2+、Al3+、Zn2+、Ba2+对酶活有抑制作用。该酶的活性明显高于已报道的褐藻胶裂解酶,pH稳定范围广(5~10),并且对聚甘露糖醛酸的活性高于对聚古罗糖醛酸的活性。  相似文献   

14.
O-Acetylserine (thiol) lyase, the last enzyme in the cysteine biosynthetic pathway, was purified to homogeneity from spinach leaf chloroplasts. The enzyme has a molecular mass of 68,000 and consists of two identical subunits of Mr 35,000. The absorption spectrum obtained at pH 7.5 exhibited a peak at 407 nm due to pyridoxal phosphate, and addition of O-acetylserine induced a considerable modification of the spectrum. The pyridoxal phosphate content was found to be 1.1 per subunit of 35,000, and the chromophore was displaced from the enzyme by O-acetylserine, leading to a progressive inactivation of the holoenzyme. Upon gel filtration chromatography on Superdex 200, part of the chloroplastic O-acetylserine (thiol) lyase eluted in association with serine acetyltransferase at a position corresponding to a molecular mass of 310,000 (such a complex called cysteine synthase has been characterized in bacteria). The activity of O-acetylserine (thiol) lyase was optimum between pH 7.5 and 8.5. The apparent Km for O-acetylserine was 1.3 mM and for sulfide was 0.25 mM. The calculated activation energy was 12.6 kcal/mol at 10 mM O-acetylserine. The overall amino-acid composition of spinach chloroplast O-acetylserine (thiol) lyase was different than that determined for the same enzyme (cytosolic?) obtained from a crude extract of spinach leaves. A polyclonal antibody prepared against the chloroplastic O-acetylserine (thiol) lyase exhibited a very low cross-reactivity with a preparation of mitochondrial matrix and cytosolic proteins suggesting that the chloroplastic isoform was distinct from the mitochondrial and cytosolic counterparts.  相似文献   

15.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

16.
Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.Abbreviations PDH pyruvate dehydrogenase complex (EC 1.2.2.2) - PFL pyruvate formate lyase (EC 2.3.1.54) - LDH lactate dehydrogenase (EC 1.1.1.27) - FBP fructose-1,6-bisphosphate - MTT 3-(4,5-dimethyl-thiazoyl-2)-2,5-diphenyltetrazolium bromide - TPP thiamine pyrophosphate  相似文献   

17.
The molecular weight of polymeric alginic acid digested by alginate lyase (poly(1,4-beta-D-mannuronide) lyase, EC 4.2.2.3) was determined at various stages of the lysis. Low molecular weigh fragments were detected only after 60-100% lysis. Some high molecular weight fragments remained intact even after addition of a fresh aliquot of enzyme to the digest. The enzyme showed maximal activity at pH 5.6 in 0.05 M salt. Enzyme activity was stimulated by addition of 7.5 mM CaCl2 and 0.2 M NaCl, when the pH optimum was between 8 and 8.5. Only mannuronic acid was detected at the reducing end of fragments after exhausive enzymolysis, reduction and hydrolysis. On studying the reaction products by NMR, a double-bound signal (sigma = 5.98 ppm) was observed. A considerable decrease in intensity of the D-mannuronic acid residue signal was detected after hydrolysis of alginate lyase VI on poly-(ManUA-GulUA), but not poly(GulUA). The results suggest that alginate lyase VI may be an endoalginate lyase that splits glycoside bonds only between two mannuronic acid residues.  相似文献   

18.
In Escherichia coli, aerobiosis inhibits the synthesis of enzymes for anaerobic respiration (e.g., nitrate reductase and fumarate reductase) and for fermentation (e.g., formate-hydrogen lyase). Anaerobically, nitrate induces nitrate reductase synthesis and inhibits the formation of both fumarate reductase and formate-hydrogen lyase. Previous work has shown that narL+ is required for the effects of nitrate on synthesis of both nitrate reductase and fumarate reductase. Another gene, narK (whose function is unknown), has no observable effect on formation of these enzymes. We report here our studies on the role of nar genes in fumarate reductase and formate-hydrogen lyase gene expression. We observed that insertions in narX (also of unknown function) significantly relieved nitrate inhibition of fumarate reductase gene expression. This phenotype was distinct from that of narL insertions, which abolished this nitrate effect under certain growth conditions. In contrast, insertion mutations in narK and narGHJI (the structural genes for the nitrate reductase enzyme complex) significantly relieved nitrate inhibition of formate-hydrogen lyase gene expression. Insertions in narL had a lesser effect, and insertions in narX had no effect. We conclude that nitrate affects formate-hydrogen lyase synthesis by a pathway distinct from that for nitrate reductase and fumarate reductase.  相似文献   

19.
The growth kinetics of Lactococcus lactis ssp. lactis were studied in batch culture in conditions of non-limiting lactose and the presence of citric acid. The control of pH modified growth and citrate metabolism but did not change the yield of acid formation. At controlled pH the growth rate was unaffected by citrate metabolism. Lactose was transformed to L-lactate and assay of the metabolic by-products showed some heterofermentation at the end of the growth of cultures with low growth rates. This heterofermentation was interpreted as a slowing down of glycolysis with activation of both the pyruvate formate lyase (PFL) and the pyruvate dehydrogenase complex (PDHC). Under these conditions the presence of citric acid affected the activity of both the PDHC and the alcohol dehydrogenase (ADH). L-Lactate remains the major fermentation end-product and the sole inhibitor of fermentation, this inhibition was greater on growth than on lactic acid production.  相似文献   

20.
Anaerobically, Brochothrix thermosphacta fermented glucose primarily to l-lactate, acetate, formate, and ethanol. The ratio of these end products varied with growth conditions. Both the presence of acetate and formate and a pH below about 6 increased l-lactate production from glucose. Small amounts of butane-2,3-diol were also produced when the pH of the culture was low (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号