首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

2.
Restriction enzyme digestion of hemimethylated DNA.   总被引:26,自引:17,他引:9       下载免费PDF全文
Hemimethylated duplex DNA of the bacteriophage phi X 174 was synthesized using primed repair synthesis is in vitro with E. coli DNA polymerase I followed by ligation to produce the covalently closed circular duplex (RFI). Single-stranded phi X DNA was used as a template, a synthetic oligonucleotide as primer and 5-methyldeoxycytidine-5'-triphosphate (5mdCTP) was used in place of dCTP. The hemimethylated product was used as substrate for cleavage by various restriction enzymes. Out of the 17 enzymes tested, only 5 (BstN I, Taq I, Hinc II, Hinf I and Hpa I) cleaved the hemimethylated DNA. Two enzymes (Msp I and Hae III) were able to produce nicks on the unmethylated strand of the cleavage site. Msp I, which is known to cleave at CCGG when the internal cytosine residue is methylated, does not cleave when both cytosines are methylated. Another enzyme, Apy I, cleaves at the sequence CCTAGG when the internal cytosine is methylated, but is inactive on hemimethylated DNA in which both cytosines are methylated. Hemimethylated molecules should be useful for studying DNA methylation both in vivo and in vitro.  相似文献   

3.
Mammalian DNA methyltransferases prefer poly(dI-dC) as substrate   总被引:1,自引:0,他引:1  
The synthetic duplex DNA, poly(dI-dC).poly(dI-dC), is methylated in vitro by human or murine DNA methyltransferases at 20-100 times the rate of other nonmethylated DNAs. Preparation of the hemimethylated derivative, poly(dI-dMeC).poly(dI-dC), of this polymer increases its effectiveness as a substrate by 2-fold, making it 4-10 times more effective as a substrate for mammalian DNA methyltransferases than any other hemimethylated DNA so far reported. However, the apparent slower rate of de novo methylation of poly(dI-dC).poly(dI-dC) as compared to the hemimethylated derivative is due to substrate inhibition, unique to the unmethylated polymer, as the rates of de novo and maintenance methylation are identical at low substrate concentrations.  相似文献   

4.
Differences in the type of base methylated (cytosine or adenine) and in the extent of methylation were detected by high-pressure liquid chromatography in the DNAs of five spiroplasmas. Nearest neighbor analysis and digestion by restriction enzyme isoschizomers also revealed differences in methylation sequence specificity. Whereas in Spiroplasma floricola and Spiroplasma sp. strain PPS-1 5-methylcytosine was found on the 5' side of each of the four major bases, the cytosine in Spiroplasma apis DNA was methylated only when its 3' neighboring base was adenine or thymine. In Spiroplasma sp. strain MQ-1 over 95% of the methylated cytosine was in C-G sequences. Essentially all of the C-G sequences in the MQ-1 DNA were methylated. Partially purified extracts of S. apis and Spiroplasma sp. strain MQ-1 were used to study substrate and sequence specificity of the methylase activity. Methylation by the MQ-1 enzyme was exclusively at C-G sequences, resembling in this respect eucaryotic DNA methylases. However, the MQ-1 methylase differed from eucaryotic methylases by showing high activity on nonmethylated DNA duplexes, low activity with hemimethylated DNA duplexes, and no activity on single-stranded DNA.  相似文献   

5.
The ability of thirty Type II restriction endonucleases to cleave five different types of highly modified DNA has been examined. The DNA substrates were derived from relatively large bacteriophage genomes which contain all or most of the cytosine or thymine residues substituted at the 5-position. These substituents were a proton (PBS1 DNA), a hydroxymethyl group (SP01 DNA), a methyl group (XP12 DNA), a glucosylated hydroxymethyl group (T4 DNA), or a phosphoglucuronated, glucosylated 4,5-dihydroxypentyl group (SP15 DNA). Although PBS1 DNA and SP01 DNA were digested by most of the enzymes, they were cleaved much more slowly than was normal DNA by many of them. 5-Methylcytosine-rich XP12 DNA and the multiply modified T4 and SP15 DNAs were resistant to most of these endonucleases. The only enzyme that cleaved all five of these DNAs was TaqI, which fragmented them extensively.  相似文献   

6.
The EcoKI methyltransferase methylates two adenines on opposite strands of its bipartite DNA recognition sequence AAC(N6)GTGC. The enzyme has a strong preference for hemimethylated DNA substrates, but the methylation state of the DNA does not influence its binding affinity. Methylation interference was used to compare the contacts made by the EcoKI methyltransferase with unmodified, hemimethylated or fully modified DNAs. Contacts were seen at or near the N7 position of guanine, in the major groove, for all of the guanines in the EcoKI recognition sequence, and at two guanines on the edge of the intervening spacer sequence. The presence of the cofactor and methyl donor S-adenosyl methionine had a striking effect on the interference pattern for unmodified DNA which could not be mimicked by the presence of the cofactor analogue S-adenosyl homocysteine. In contrast, S-adenosyl methionine had no effect on the interference patterns for either kind of hemimethylated DNA, or for fully modified DNA. Differences between the interference patterns for the unmodified DNA and any of the three forms of methylated DNA provide evidence that methylation of the target sequence influences the conformation of the protein-DNA interface, and illustrate the importance of S-adenosyl methionine in the distinction between unmodified and methylated DNA by the methyltransferase.  相似文献   

7.
DNA methyltransferase activities have been partially purified from unfertilized eggs and blastula nuclei of sea urchin embryos. Comparative studies, using different DNAs as substrates, show that the two preparations are most active on hemimethylated and single-strand DNA, but they methylate, though at a lower rate, also on double-strand DNA. The two activities show distinctive efficiencies in methylating plasmid DNAs and marked differences in the rate of methyl transfer to DNAs in different structural states: linear, relaxed, or supercoiled. The ratio of the apparent specific activity of the two preparations depends on the particular DNA used as substrate and its structure. Methylation analysis of the restriction fragments of methylated plasmid DNAs shows a linear correlation between introduced methyl groups and the percent of CpG of each particular fragment, indicating that methylation is substantially random and sequence is less relevant than conformation in determining enzyme efficiency. The data do not permit us to decide if the two activities are different enzymes or the same enzyme with different modulating factors.  相似文献   

8.
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.  相似文献   

9.
Effects of DNA binding proteins on DNA methylation in vitro   总被引:1,自引:0,他引:1  
The inheritance of DNA methylation patterns may play an important role in the stability of the differentiated state. We have therefore studied the inhibitory effects of DNA binding proteins on DNA methylation in vitro. Mouse L1210 cells grown in the presence of 5-azacytidine acquire hemimethylated sites in their DNA. Purified hemimethylated DNA accepted methyl groups from S-adenosyl-L-methionine in the presence of a crude maintenance methylase more readily than purified DNA isolated from cells not exposed to 5-azacytidine. On the other hand, chromatin fractions isolated from cells grown in the presence or absence of 5-azacytidine were poor substrates for the maintenance methylase irrespective of the number of hemimethylated sites present in the DNA. Inhibition of DNA methylation was shown to be associated primarily with chromatin proteins bound to DNA, and trypsinization of nuclei increased their methyl accepting abilities. Methyl acceptance was increased by salt extraction of chromosomal proteins. These data suggest that association of histones with DNA may play a role in the modulation of methylation patterns.  相似文献   

10.
Antibodies specifically directed to 5-methylcytidine were raised in rabbits and purified by affinity chromatography. The accessibility of 5-methyldeoxycytidine (m5dCyd) to such antibodies was studied with DNAs from various origins. The reaction was followed by measuring the retention of radiolabelled DNA by antibodies on nitrocellulose filters, by immunoprecipitation, by gel filtration and was visualized with the electron microscope. Antibodies did not bind to Escherichia coli B DNA, which is deficient in m5dCyd. Denatured and native DNA from calf thymus, which contains m5dCyd as a minor nucleoside, was weakly retained on the filters whereas DNA extracted from Xanthomonas oryzae XP12 bacteriophage, which is rich in m5dCyd, was well recognized even in the native form.  相似文献   

11.
The origin and function of the large amount of 5-methylcytosine in plant DNA is not well understood. As a tool for in vitro studies of methylcytosine formation in plants we have isolated and characterized the DNA methyltransferase present in germinating wheat embryo. An enzyme fraction enriched 300-fold over the tissue homogenate was obtained by salt extraction of nuclei, chromatography on DEAE-cellulose, Sephadex G-75, blue Sepharose and on DNA immobilized on cellulose. It catalyzes the methylation of cytosine residues in double-stranded DNAs isolated from wheat, maize, calf thymus or bacteria using S-adenosylmethionine as methyl donor. The efficient methylation of both an unmethylated plasmid DNA and its hemimethylated derivative indicate that the wheat DNA methylase can function de novo and in maintenance methylation. A relative molecular mass of 50,000-55,000 was estimated by gel permeation chromatography and sucrose density gradient centrifugation. Polyacrylamide gel electrophoresis showed the presence of a protein of Mr = 50,000 and one other component (Mr = 35,000). The preference for endogenous, double-stranded DNA as substrate and the lower molecular mass distinguish wheat DNA methyltransferase from the DNA methylases obtained from mammalian sources. The properties of the wheat enzyme resemble, however, those of the DNA methylase isolated from the alga Chlamydomonas reinhardii, suggesting that plant cells possess their own type of DNA methyltransferase for the biosynthesis of their high methylcytosine content in DNA.  相似文献   

12.
In the cell, Dnmt1 is the major enzyme in maintenance of the pattern of DNA methylation after DNA replication. Evidence suggests that the protein is located at the replication fork, where it could directly modify nascent DNA immediately after replication. To elucidate the potential mechanism of this process, we investigate the processivity of DNA methylation and accuracy of copying an existing pattern of methylation in this study using purified Dnmt1 and hemimethylated substrate DNA. We demonstrate that Dnmt1 methylates a hemimethylated 958-mer substrate in a highly processive reaction. Fully methylated and unmethylated CG sites do not inhibit processive methylation of the DNA. Extending previous work, we show that unmethylated sites embedded in a hemimethylated context are modified at an approximately 24-fold reduced rate, which demonstrates that the enzyme accurately copies existing patterns of methylation. Completely unmodified DNA is methylated even more slowly due to an allosteric activation of Dnmt1 by methylcytosine-containing DNA. Interestingly, Dnmt1 is not able to methylate hemimethylated CG sites on different strands of the DNA in a processive manner, indicating that Dnmt1 keeps its orientation with respect to the DNA while methylating the CG sites on one strand of the DNA.  相似文献   

13.
We have investigated the methylation state of the rat gamma-crystallin genes in DNA from lens cells at different developmental stages as well as from kidney and heart cells. A clear correlation between the extent of demethylation of the promoter and 5' gene regions and the expression of these genes was observed. No change in the methylation state of the far upstream or 3' regions of the genes was seen. The demethylation of the promoter region was shown to occur during the differentiation from the lens epithelial to the lens fiber cell. The effect of cytosine methylation on gamma-crystallin promoter activity was tested by measuring gamma-crystallin promoter/chloramphenicol acetyltransferase fusion gene expression after in vitro primed repair synthesis of the promoter region in the presence of either dCTP or 5mdCTP. The hemimethylated promoter was no longer capable of promoting high CAT activity after introduction into lens-like cells. Taken together, our data suggest that DNA demethylation may be the determining step in the developmental stage-specific expression of the rat gamma-crystallin genes.  相似文献   

14.
Oligodeoxynucleotides spanning codon 12 of the human c-Ha-ras gene were found to be exceptionally good substrates for de novo methylation by human DNA(cytosine-5)methyltransferase. In the complex formed by two complementary 30mers, only the C-rich strand was methylated by the enzyme. Guanines at the 3' end of the G-rich strand of the complex could not be completely modified by dimethyl sulfate [corrected] suggesting tetrameric bonding at these G-residues. An eight-stranded structure, composed of four duplex DNAs at one end, joined to a G4-DNA segment at the other with the junction between the two DNA forms at codon 12, can account for our results.  相似文献   

15.
Yu Ye 《Analytical biochemistry》2010,401(1):168-1345
We have developed the first economical and rapid nonradioactive assay method that is suitable for high-throughput screening of the important pharmacological target human DNA (cytosine-5)-methyltransferase 1 (DNMT1). The method combines three key innovations: the use of a truncated form of the enzyme that is highly active on a 26-bp hemimethylated DNA duplex substrate, the introduction of the methylation site into the recognition sequence of a restriction endonuclease, and the use of a fluorogenic read-out method. The extent of DNMT1 methylation is reflected in the protection of the DNA substrate from endonuclease cleavage that would otherwise result in a large fluorescence increase. The assay has been validated in a high-throughput format, and trivial changes in the substrate sequence and endonuclease allow adaptation of the method to any bacterial or human DNA methyltransferase.  相似文献   

16.
Eukaryotic DNA methylases and their use for in vitro methylation   总被引:1,自引:0,他引:1  
DNA methylases from mouse and pea have been purified and characterized. Both are high molecular mass enzymes that show greater activity with hemimethylated than unmethylated substrate DNA. Both methylate cytosines in CpG preferentially, but not exclusively and show similar kinetics of methylation, which makes it difficult to saturate all possible sites on the DNA, but procedures are described that circumvent this problem.  相似文献   

17.
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.  相似文献   

18.
R L Adams  C L So 《FEBS letters》1989,246(1-2):54-56
We have analysed the 5-methylcytosine content of hen erythrocyte DNA and found it to be lower than that of DNA from other chick tissues analysed. Erythrocyte DNA is also a better substrate for DNA methylase having a five-fold lower Km than DNA from white blood cells. This is probably because it contains a large number of hemimethylated sites. Thus the inverse correlation between methylation and gene expression does not apply to the chick red blood cell.  相似文献   

19.
N-6 methylation of adenine destabilises duplex DNA and this can increase the proportion of DNA that dissociates into single strands. We have investigated utilising this property to measure the DNA adenine methyltransferase-catalyzed conversion of hemimethylated to fully methylated DNA through a simple, direct, fluorescence-based assay. The effects of methylation on the kinetics and thermodynamics of hybridisation were measured by comparing a fully methylated oligonucleotide product and a hemimethylated oligonucleotide substrate using a 13-bp duplex labeled on adjacent strands with a fluorophore (fluorescein) and quencher (dabcyl). Enzymatic methylation of the hemimethylated GATC site resulted in destabilisation of the duplex, increasing the proportion of dissociated DNA, and producing an observable increase in fluorescence. The assay provides a direct measurement of methylation rate in real time and is highly reproducible, with a coefficient of variance over 48 independent measurements of 3.6%. DNA methylation rates can be measured as low as 3.55 ± 1.84 fmol s−1 in a 96-well plate format, and the assay has been used to kinetically characterise the Pyrococcus horikoshii DNA adenine methyltransferase.  相似文献   

20.
DNA methylation was examined in xeroderma pigmentosum (XP) cells. The amount of 5-methylcytosine (mC) in DNA from XP cells was about 70% of that in DNA from normal controls. Southern hybridization analysis showed that the HLA-DR alpha gene in XP lymphocyte B cells was differently methylated from normals, but its expression was apparently unaffected. The methylation of dihydrofolate reductase, a housekeeping gene, was the same as in controls. The revertants to UV resistance from XP fibroblasts recovered a methylation level close to that of normal cells. Results suggested that XP DNA was undermethylated non-randomly, and that DNA methylation might be associated with DNA repair function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号