首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conspecific brood parasitism (CBP) is an alternative reproductive tactic found in many animals with parental care. Parasitizing females lay eggs in the nests of other females (hosts) of the same species, which incubate and raise both their own and the foreign offspring. The causes and consequences of CBP are debated. Using albumen fingerprinting of eggs for accurately detecting parasitism, we here analyse its relation to female condition and clutch size in High Arctic common eiders Somateria mollissima borealis. Among 166 clutches in a Svalbard colony, 31 (19%) contained eggs from more than one female, and 40 of 670 eggs (6%) were parasitic. In 6 cases an active nest with egg(s) was taken over by another female. Many suitable nest sites were unoccupied, indicating that CBP and nest takeover are reproductive tactics, not only consequences of nest site shortage. Similarity in body mass between female categories suggests that condition does not determine whether a nesting female becomes parasitised. There was no evidence of low condition in parasites: egg size was similar in hosts and parasites, and parasitism was equally frequent early and late in the laying season. Meta‐analysis of this and 3 other eider studies shows that there is a cost of being parasitised in this precocial species: host females laid on average 7% fewer eggs than other females.  相似文献   

2.
I consider the possibility of selection favouring large body size in a population of snow petrels (Pagodroma nivea), a long‐lived seabird species. I measured natural selection on body size traits in a population from 1987 to 1998. There was evidence of selection on body size associated with fecundity and survival. Directional selection on bill length and stabilizing selection on tarsus length associated with reproductive success were detected among males. Selection associated with survival favoured males with longer bills. However, selection was weak in all cases. No evidence of selection acting on female body size traits was detected. Offspring–parents regression suggested that bill length and tarsus length were heritable. Although I was able to identify the targets of selection in this population, I could not demonstrate the ecological implications of both tarsus length and bill length variation. The selection on male, but not on female, body size traits suggests factors such as intrasexual competition for nests and/or mates rather than factors such as feeding efficiency as mechanisms of selection on bill size.  相似文献   

3.
Life history theory is an essential framework to understand the evolution of reproductive allocation. It predicts that individuals of long‐lived species favour their own survival over current reproduction, leading individuals to refrain from reproducing under harsh conditions. Here we test this prediction in a long‐lived bird species, the Siberian jay Perisoreus infaustus. Long‐term data revealed that females rarely refrain from breeding, but lay smaller clutches in unfavourable years. Neither offspring body size, female survival nor offspring survival until the next year was influenced by annual condition, habitat quality, clutch size, female age or female phenotype. Given that many nests failed due to nest predation, the variance in the number of fledglings was higher than the variance in the number of eggs and female survival. An experimental challenge with a novel pathogen before egg laying largely replicated these patterns in two consecutive years with contrasting conditions. Challenged females refrained from breeding only in the unfavourable year, but no downstream effects were found in either year. Taken together, these findings demonstrate that condition‐dependent reproductive allocation may serve to maintain female survival and offspring quality, supporting patterns found in long‐lived mammals. We discuss avenues to develop life history theory concerning strategies to offset reproductive costs.  相似文献   

4.
Natal or prebreeding dispersal is a key driver of the functioning, dynamics, and evolution of populations. Conditions experienced by individuals during development, that is, rearing conditions, may have serious consequences for the multiple components that shape natal dispersal processes. Rearing conditions vary as a result of differences in parental and environmental quality, and it has been shown that favorable rearing conditions are beneficial for individuals throughout their lives. However, the long‐term consequences of rearing conditions on natal dispersal are still not fully understood in long‐lived birds. In this study, we aim to test the following hypotheses to address the relationship between rearing conditions and certain components of the natal dispersal process in Bonelli’s eagle (Aquila fasciata): (1) The body condition of nestlings depends on the quality of the territory and/or breeders; and (2) the survival until recruitment, (3) the age of recruitment, and (4) the natal dispersal distance (NDD) all depend on rearing conditions. As expected, nestlings reared in territories with high past productivity of chicks had better body condition, which indicates that both body condition and past productivity reflect the rearing conditions under which chicks are raised. In addition, chicks raised in territories with high past productivity and with good body condition had greater chances of surviving until recruitment. Furthermore, birds that have better condition recruit earlier, and males recruit at a younger age than females. At last, although females in good body condition exhibited higher NDD when they recruited at younger ages, this pattern was not observed in either older females or males. Overall, this study provides evidence that rearing conditions have important long‐term consequences in long‐lived birds. On the basis of our results, we advocate that conservation managers work actively in the promotion of actions aimed at improving the rearing conditions under which individuals develop in threatened populations.  相似文献   

5.
Although senescence has been described for various fitness components in a wide range of animal species, few studies have studied senescence in long‐lived species, and little is known about its interactions with varying environmental conditions. Using a 32 year capture–mark–recapture dataset on the griffon vulture Gyps fulvus, we examined the demographic patterns of actuarial senescence and the patterns of year‐to‐year variation in survival rates. We found a significant, surprisingly late, decrease of annual survival probabilities from the age of 28 years onward and divided individual lifetimes into to three categories (juvenile, mid‐age and senescent birds). In agreement with the environmental canalization hypothesis, our analyses uncovered 1) higher temporal variation of annual survival probabilities in both the juvenile and senescent age classes compared to the mid‐age class and 2) low sensitivity of the population growth rate to the survival of both the juvenile and senescent age classes. Our results further suggested that the temporal variation in the survival of senescent birds might be related to intra‐annual changes in air temperature amplitudes. Finally, using population dynamics modeling, we revealed contrasting effects of the inclusion of the senescent age class on predicted population growth, depending on how survival rates were modeled. Altogether, our results demonstrate the existence of a class of senescent birds that exhibit distinct demographic properties compared to juvenile and mid‐age classes.  相似文献   

6.
Among most species of birds, survival from hatching throughout the first year of life is generally lower than subsequent survival rates. Survival of young birds during their first year may depend on a combination of selection, learning, unpredictable resources, and environmental events (i.e., post‐fledging factors). However, knowledge about post‐fledging development in long‐lived species is usually limited due to a lengthy immature stage when individuals are generally unobservable. Therefore, pre‐fledging characteristics are often used to predict the survival of young birds. We assessed effects of nestling growth rates, hatching date, hatching asynchrony, brood size and rank order after brood reduction, and sex on first‐year survival of 137 fledglings using a mark‐resighting analysis. We found that the survival probability (Φ1yr = 0.39) of first‐year Herring Gulls (Larus argentatus) in our study colony located at the outer port of Zeebrugge (Belgium) was lower than that of older individuals (Φ>1yr = 0.75). All 10 models best supported by our data included nestling growth rate, suggesting that variability in first‐year survival may be linked primarily to individual variation in growth. First‐year survival was negatively correlated with hatching date and rank order after brood reduction. Hence, carry‐over effects of breeding season events such as timing of breeding, early development, and social status had an influence on survival of Herring Gulls after fledging. Furthermore, we found sex‐biased mortality in first‐year Herring Gulls, with females (Φ1yr = 0.45) surviving better than males (Φ1yr = 0.38). Although adult survival is generally regarded as the key parameter driving population trajectories in long‐lived species, juvenile survival has recently been acknowledged as an important source of variability in population growth rates. Thus, increasing our knowledge of factors affecting age‐specific survival rates is necessary to improve our understanding of population dynamics and ultimately life‐history variation.  相似文献   

7.
Factors responsible for individual variation in partial migration patterns are poorly known, and identifying possible causes of these changes is essential for understanding the flexibility in migratory behavior. Analyzing 190 life histories of great bustards Otis tarda radio‐tagged in central Spain, we investigated the changes in migratory tendency across lifetime in this long‐lived bird, and how migratory flexibility is related to individual condition. In females migratory behavior was not fixed individually. For every age class there was a fraction of ca 15–30% of females that changed their migratory pattern between consecutive years. Migrant females tended to remain sedentary in years when they had dependent young to attend. These findings show that the female migratory tendency is a behaviorally flexible, condition‐dependent trait. Immature females usually acquired their migratory behavior by learning from the mother in their first winter or by social transmission from other migratory females in their second winter. As for immature males, their summer migratory behavior was not related to mother–offspring transmission, but learned from adult males. We found that their age‐related increase in migratory tendency was associated to a greater integration in flocks of migrant adult males. These results show that within the partial migration system, cultural transmission mechanisms, either mediated by kin or not, and individual condition, may contribute to shape the migratory tendency. Our study reinforces the view that the migratory behavior is an evolutionary complex trait conditioned by the interaction of individual, social and environmental factors. Particularly in long‐lived species with extended parental care, the inherited migration program may be shaped by mother–offspring and social transmission of migratory patterns.  相似文献   

8.
The number of eider in the Wadden Sea of Schleswig-Holstein was counted by aerial surveys during 1986 and 1987. The highest number occurred during migration in October 1987 with 151 000 ducks, the lowest number during the breeding time in May 1987 with 6000 ducks. About 100 000–120 000 eiders moult in July/August in the Wadden Sea of Schleswig-Holstein, but only 30 000–40 000 stay over winter. The average number was 62 000 ducks. Eider have increased in number since the seventies, when the average population size was estimated to be only 23 000. The increase referred mainly to moulting and migrating eider, whereas numbers in winter remained constant. There are substantial changes in the spatial distribution over the year. In most areas sites used during moult, migration and winter can be clearly separated, although so far no obvious differences in the morphology of these areas could be found. The annual food consumption was calculated to be 3.1×106 kg AFDW or 1.3 g AFDW×m−2×year−1, which is about 5% of the average biomass of macrozoobenthos. The increase in the number of eider has led to a significant increase in total food consumption of carnivorous birds, which was estimated at 7.1×106 kg AFDW × year−1 in the seventies and now reaches 9.0×106 kg AFDW×year−1, of which the eider takes 34%. The reasons for and consequences of the increase of the eider are discussed in context with the eutrophication of the North Sea and possible competition with shellfishery. Presented at the VI International Wadden Sea Symposium (Biologische Anstalt Helgoland, Wattenmeerstation Sylt, D-2282 List, FRG, 1–4 November 1988)  相似文献   

9.
A comparison of commonly occurring metazoan parasites in the digestive tract was made between common eiders, Somateria mollissima, that were contaminated with oil and reference birds confiscated from illegal hunting. There was a greater number of commonly occurring parasites and their abundance in reference than in oiled eiders. Except for an acanthocephalan, Polymorphus botulus, which was embedded in the wall of the intestinal tract, most of the other taxa of parasites, including trematodes, cestodes and nematodes, were probably voided from the birds following ingestion of oil. Reference eiders harboured fewer species and a substantially lower mean abundance of parasites than those studied in Newfoundland and Labrador more than four decades ago; this may be a signal of a changing prey base or an increase in prey availability as winter ice cover continues to decline.  相似文献   

10.
For avian group living to be evolutionary stable, multiple fitness benefits are expected. Yet, the difficulty of tracking fledglings, and thus estimating their survival rates, limits our knowledge on how such benefits may manifest postfledging. We radio‐tagged breeding females of the Afrotropical cooperatively breeding Placid greenbul (Phyllastrephus placidus) during nesting. Tracking these females after fledging permitted us to locate juvenile birds, their parents, and any helpers present and to build individual fledgling resighting datasets without incurring mortality costs or causing premature fledging due to handling or transmitter effects. A Bayesian framework was used to infer age‐specific mortality rates in relation to group size, fledging date, maternal condition, and nestling condition. Postfledging survival was positively related to group size, with fledglings raised in groups with four helpers showing nearly 30% higher survival until independence compared with pair‐only offspring, independent of fledging date, maternal condition or nestling condition. Our results demonstrate the importance of studying the early dependency period just after fledging when assessing presumed benefits of cooperative breeding. While studying small, mobile organisms after they leave the nest remains highly challenging, we argue that the telemetric approach proposed here may be a broadly applicable method to obtain unbiased estimates of postfledging survival.  相似文献   

11.
The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow‐fast continuum – the covariation among life‐history traits describing species‐specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output – strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long‐lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short‐lived species. We tested this life‐history prediction by analysing long‐term time series of individual‐based data in nine species of birds and mammals using capture‐recapture models. We found that individual heterogeneity in survival was higher in species with short‐generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild.  相似文献   

12.
In migrant birds, survival estimates for the different life‐history stages between fledging and first breeding are scarce. First‐year survival is shown to be strongly reduced compared with annual survival of adult birds. However, it remains unclear whether the main bottleneck in juvenile long‐distant migrants occurs in the postfledging period within the breeding ranges or en route. Quantifying survival rates during different life‐history stages and during different periods of the migration cycle is crucial to understand forces driving the evolution of optimal life histories in migrant birds. Here, we estimate survival rates of adult and juvenile barn swallows (Hirundo rustica L.) in the breeding and nonbreeding areas using a population model integrating survival estimates in the breeding ranges based on a large radio‐telemetry data set and published estimates of demographic parameters from large‐scale population‐monitoring projects across Switzerland. Input parameters included the country‐wide population trend, annual productivity estimates of the double‐brooded species, and year‐to‐year survival corrected for breeding dispersal. Juvenile survival in the 3‐week postfledging period was low (S = 0.32; SE = 0.05), whereas in the rest of the annual cycle survival estimates of adults and juveniles were similarly high (S > 0.957). Thus, the postfledging period was the main survival bottleneck, revealing the striking result that nonbreeding period mortality (including migration) is not higher for juveniles than for adult birds. Therefore, focusing future research on sources of variation in postfledging mortality can provide new insights into determinants of population dynamics and life‐history evolution of migrant birds.  相似文献   

13.
How environmental conditions affect the timing and extent of parental care is a fundamental question in comparative studies of life histories. The post‐fledging period is deemed critical for offspring fitness, yet few studies have examined this period, particularly in tropical birds. Tropical birds are predicted to have extended parental care during the post‐fledging period and this period may be key to understanding geographic variation in avian reproductive strategies. We studied a neotropical passerine, the western slaty‐antshrike Thamnophilus atrinucha, and predicted greater care and higher survival during the post‐fledging period compared to earlier stages. Furthermore, we predicted that duration of post‐fledging parental care and survival would be at the upper end of the distribution for Northern Hemisphere passerines. Correspondingly, we observed that provisioning continued for 6–12 weeks after fledging. In addition, provisioning rate was greater after fledging and offspring survival from fledging to independence was 75%, greater than all estimates from north‐temperate passerines. Intervals between nesting attempts were longer when the first brood produced successful fledglings compared to nests where offspring died either in the nest or upon fledging. Parents delayed initiating second nests after the first successful brood until fledglings were near independence. Our results indicate that parents provide greater care after fledging and this extended care likely increased offspring survival. Moreover, our findings of extended post‐fledging parental care and higher post‐fledging survival compared to Northern Hemisphere species have implications for understanding latitudinal variation in reproductive effort and parental investment strategies.  相似文献   

14.
Multiple paternity is relatively common across diverse taxa; however, the drivers and implications related to paternal and maternal fitness are not well understood. Several hypotheses have been offered to explain the occurrence and frequency of multiple paternity. One set of hypotheses seeks to explain multiple paternity through direct and indirect benefits including increased genetic diversity or enhanced offspring fitness, whereas another set of hypotheses explains multiple paternity as a by‐product of sexual conflict and population‐specific parameters such as density. Here, we investigate mating system dynamics in a historically studied population of the American alligator (Alligator mississippiensis) in coastal South Carolina. We examine parentage in 151 nests across 6 years and find that 43% of nests were sired by multiple males and that male reproductive success is strongly influenced by male size. Whereas clutch size and hatchling size did not differ between singly sired and multiply sired nests, fertility rates were observed to be lower in multiply sired clutches. Our findings suggest that multiple paternity may exert cost in regard to female fitness, and raise the possibility that sexual conflict might influence the frequency of multiple paternity in wild alligator populations.  相似文献   

15.
The present study describes the age and growth of the leatherjacket Meuschenia scaber, a common Australasian monacanthid and valued by‐catch of the inshore bottom trawl fishery in New Zealand. Age was determined from the sagittal otoliths of 651 individuals collected between July 2014 and March 2016 in the Hauraki Gulf of New Zealand. Otolith sections revealed alternating opaque and translucent zones and edge‐type analysis demonstrated that these are deposited annually. Meuschenia scaber displayed rapid initial growth, with both males and females reaching maturity in 1–2 years and 50% of both sexes matured at 1·5 years. Maximum age differed substantially between the sexes, at 9·8 years for males and 17·1 years for females. Growth rate was similar between sexes, although males reached greater mass at age than females in the early part of the lifespan. The length–mass relationship differed significantly between the sexes, with males displaying negative allometric growth and females isometric growth. Female condition was highest in July, declined in August with the onset of spawning and showed a slight peak in January and February, immediately following the spawning season. This study substantially extends the maximum longevity recorded for monacanthids, although males had much shorter lifespans and higher mortality, than females.  相似文献   

16.
How plant‐feeding insects distribute themselves and utilize their host plant resources is still poorly understood. Several processes may be involved, and their relative roles may vary with the spatial scale considered. Herein, we investigate small‐scale patterns, namely how population density of a gall midge is affected by individual growth form, phenology, and microsite characteristics of its herb host. The long‐lived plant individuals vary much with regard to number of shoots, flower abundance, and flowering phenology. This variation is connected to site characteristics, primarily the degree of sun exposure. The monophagous insect galls the flowers of the host plant – an easily defined food resource. It is a poor disperser, but very long‐lived; diapausing larvae can stay in the soil for many years. Galls were censused on individual plants during 5 years; from a peak to a low in gall population density. Only a very small fraction of the flowers produced (<0.5%) were galled even in the peak year. Nevertheless, most plant individuals had galls at least 1 year. In a stepwise multiple regression, plant size (number of shoots) was found to be the most important predictor of gall density (galls/flower). However, gall density decreased more than one order of magnitude over the plant size range observed. There was also a weak effect of plant phenology. Early flowering plants had lower gall densities than those starting later. Sun exposure had no direct effect on gall density, but a path analysis revealed indirect effects via the timing of flowering. Gall population change was highly synchronous in different parts of the study area with no significant decrease in synchrony with distance.  相似文献   

17.
Selection is a central force underlying evolutionary change and can vary in strength and direction, for example across time and space. The fitness consequences of individual genetic diversity have often been investigated by testing for multilocus heterozygosity‐fitness correlations (HFCs), but few studies have been able to assess HFCs across life stages and in both sexes. Here, we test for HFCs using a 26‐year longitudinal individual‐based data set from a large population of a long‐lived seabird (the common tern, Sterna hirundo), where 7,974 chicks and breeders of known age were genotyped at 15 microsatellite loci and sampled for life‐history traits over the complete life cycle. Heterozygosity was not correlated with fledging or post‐fledging prospecting probabilities, but was positively correlated with recruitment probability. For breeders, annual survival was not correlated with heterozygosity, but annual fledgling production was negatively correlated with heterozygosity in males and highest in intermediately heterozygous females. The contrasting HFCs among life stages and sexes indicate differential selective processes and emphasize the importance of assessing fitness consequences of traits over complete life histories.  相似文献   

18.
Despite a heightened interest regarding the role of infectious diseases in wildlife conservation, few studies have explicitly addressed the impacts of chronic, persistent diseases on long‐term host population dynamics. Using mycoplasmal upper respiratory tract disease (URTD) within natural gopher tortoise Gopherus polyphemus populations as a model system, we investigated the influence of chronic recurring disease epizootics on host population dynamics and persistence using matrix population models and Markov chain models for temporally autocorrelated environments. By treating epizootics as a form of environmental stochasticity, we evaluated host population dynamics across varying levels of outbreak duration (ρ), outbreak recurrence (f), and disease‐induced mortality (μ). Baseline results indicated a declining growth rate (λ) for populations under unexposed or enzootic conditions (λEnzootic= 0.903, 95% CI: 0.765–1.04), and a median time to quasi‐extinction of 29 years (range: 28–30 years). Under recurring epizootics, stochastic growth rates overlapped with baseline growth rates, and ranged between 0.838–0.902. Median quasi‐extinction times under recurring epizootics also overlapped for most scenarios with those of baseline conditions, and ranged between 18–29 years, with both metrics decreasing as a function of f and μ. Overall, baseline (enzootic) conditions had a greater impact on λ than epizootic conditions, and demographic vital rates were proportionately more influential on λ than disease‐ or outbreak‐associated parameters. Lower‐level elasticities revealed that, among disease‐ and outbreak‐associated parameters, increases in μ, force of infection (φ), and f negatively influenced λ. The impact of disease on host population dynamics depended primarily on how often a population underwent an epizootic state, rather than how long the epizootic persisted within the exposed population. The modeling framework presented in this paper could be widely applied to a range of wildlife disease systems in which hosts suffer from persistent recurring diseases.  相似文献   

19.
20.
Abstract. Persistence by longevity has been rarely considered as an alternative to regeneration by seeding for plants showing multiple demographic strategies. We propose a conceptual model of multiple demographic strategies for long‐lived plants in stable habitats, shifting from regeneration by seeding to persistence by longevity and/or vegetative reproduction, along gradients of abiotic stress or interspecific competition. Regeneration by seeding would be promoted under low abiotic stress or under low competition, whereas persistence by longevity and/or vegetative reproduction would predominate at high levels of abiotic stress or competition. We test this model with two threatened species of the Mediterranean region, the shrub Juniperus communis, a widely distributed species which maintains relict populations in the Mediterranean mountains thanks to great adult longevity and Pinguicula vallisneriifolia, a palaeo‐endemic herb relying on a perennial habit and vegetative reproduction under drought imposed stress or high competition at late successional phases. As a main consequence, multiple demographic strategies enhance a plant's ability to exploit environmental heterogeneity at different spatial (patches, localities, regions within the species’ distribution area) and temporal (individual life span, glacial‐interglacial cycles) scales. The potential of multiple demographic dynamics based on persistence and regeneration must be considered as a major ecological trait determining the long‐term viability of peripheral populations of relict species as well as the inertia against extinction of many threatened endemisms, thereby contributing to the maintenance of the high plant diversity characterizing the Mediterranean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号