首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asthma is a chronic inflammatory disease affecting 300 million people worldwide. As telomere shortening is a well‐established hallmark of aging and that asthma incidence decreases with age, here we aimed to study the role of short telomeres in asthma pathobiology. To this end, wild‐type and telomerase‐deficient mice with short telomeres (third‐generation (G3 Tert −/− mice)) were challenged with intranasal house dust mite (HDM) extract. We also challenged with HDM wild‐type mice in which we induced a telomere dysfunction by the administration of 6‐thio‐2´‐deoxyguanosine (6‐thio‐dG). Following HDM exposure, G3 Tert −/− and 6‐thio‐dG treated mice exhibited attenuated eosinophil counts and presence of hematopoietic stem cells in the bone marrow, as well as lower levels of IgE and circulating eosinophils. Accordingly, both G3 Tert −/− and 6‐thio‐dG treated wild‐type mice displayed reduced airway hyperresponsiveness (AHR), as indicated by decreased airway remodeling and allergic airway inflammation markers in the lung. Furthermore, G3 Tert −/− and 6‐thio‐dG treated mice showed lower differentiation of Club cells, attenuating goblet cell hyperplasia. Club cells of G3 Tert −/− and 6‐thio‐dG treated mice displayed increased DNA damage and senescence and reduced proliferation. Thus, short/dysfunctional telomeres play a protective role in murine asthma by impeding both AHR and mucus secretion after HDM exposure. Therefore, our findings imply that telomeres play a relevant role in allergen‐induced airway inflammation.  相似文献   

2.
Aberrant innate and adaptive immune responsed to allergens and environmental pollutants lead to respiratory allergic disease such as asthma. In this study, we focused on toll-like receptor-4 (TLR4) expressed on airway epithelium to identify house dust mite (HDM)-regulated allergic inflammation via TLR4 signaling pathway and the triggering to alveolar macrophages (AM)-driven adaptive immune response. The authors found that mouse exposed to HDM showed more eosinophils, neutrophils, monocytes, lymphocytes as well as total cells in bronchoalveolar lavage fluid (BALF) confirmed by flow cytometry. Besides, the expression of TLR4 in airway epithelial cells was significantly increased in both mRNA and protein levels in mice treated with HDM and the expression of CD40 and CD86 in AM was also increased in mice exposed to HDM. Tight correlation between TLR4 protein and CD40, CD86 in AM was identified. This study demonstrates that TLR4 expression on airway epithelium played an essential role in HDM-induced activation of AM in immune responses and allergic inflammation. The airway epithelial TLR4 signaling pathway revealed tight connection between endotoxin exposure and asthma prevalence in the clinic.  相似文献   

3.
It has been recently that particulate matter (PM) exposure increases the risk and exacerbation of allergic asthma. However, the underlying mechanisms and factors associated with increased allergic responses remain elusive. We evaluated IL‐23 and IL‐23R (receptor) expression, as well as changes in the asthmatic phenotype in mice administered PM and a low dose of house dust mite (HDM). Next, changes in the phenotype and immune responses were evaluated after intranasal administration of anti‐IL‐23 antibody during co‐exposure to PM and low‐dose HDM. We also performed in vitro experiments to investigate the effect of IL‐23. IL‐23 expression was significantly increased in Epcam+CD45− and CD11c+ cells, while that of IL‐23R was increased in Epcam+CD45− cells only in mice administered PM and low‐dose HDM. Administration of anti‐IL‐23 antibody led to decreased airway hyperresponsiveness, eosinophils, and activation of dendritic cells, reduced populations of Th2 Th17, ILC2, the level of IL‐33 and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Inhibition of IL‐23 in PM and low‐dose HDM stimulated airway epithelial cell line resulted in decreased IL‐33, GM‐CSF and affected ILC2 and the activation of BMDCs. PM augmented the phenotypes and immunologic responses of asthma even at low doses of HDM. Interestingly, IL‐23 affected immunological changes in airway epithelial cells.  相似文献   

4.
5.
6.
Environmental ultrafine particulate matter (PM) is capable of inducing airway injury, while the detailed molecular mechanisms remain largely unclear. Here, we demonstrate pivotal roles of autophagy in regulation of inflammation and mucus hyperproduction induced by PM containing environmentally persistent free radicals in human bronchial epithelial (HBE) cells and in mouse airways. PM was endocytosed by HBE cells and simultaneously triggered autophagosomes, which then engulfed the invading particles to form amphisomes and subsequent autolysosomes. Genetic blockage of autophagy markedly reduced PM-induced expression of inflammatory cytokines, e.g. IL8 and IL6, and MUC5AC in HBE cells. Mice with impaired autophagy due to knockdown of autophagy-related gene Becn1 or Lc3b displayed significantly reduced airway inflammation and mucus hyperproduction in response to PM exposure in vivo. Interference of the autophagic flux by lysosomal inhibition resulted in accumulated autophagosomes/amphisomes, and intriguingly, this process significantly aggravated the IL8 production through NFKB1, and markedly attenuated MUC5AC expression via activator protein 1. These data indicate that autophagy is required for PM-induced airway epithelial injury, and that inhibition of autophagy exerts therapeutic benefits for PM-induced airway inflammation and mucus hyperproduction, although they are differentially orchestrated by the autophagic flux.  相似文献   

7.

Background

A neuroimmune crosstalk between dendritic cells (DCs) and airway nerves in the lung has recently been reported. However, the presence of DCs in airway sensory ganglia under normal and allergic conditions has not been explored so far. Therefore, this study aims to investigate the localisation, distribution and proliferation of DCs in airway sensory ganglia under allergic airway inflammation.

Methods

Using the house dust mite (HDM) model for allergic airway inflammation BALB/c mice were exposed to HDM extract intranasally (25 μg/50 μl) for 5 consecutive days a week over 7 weeks. With the help of the immunohistochemistry, vagal jugular-nodose ganglia complex (JNC) sections were analysed regarding their expression of DC-markers (MHC II, CD11c, CD103), the neuronal marker PGP 9.5 and the neuropeptide calcitonin gene-related peptide (CGRP) and glutamine synthetase (GS) as a marker for satellite glia cells (SGCs). To address the original source of DCs in sensory ganglia, a proliferation experiment was also carried in this study.

Results

Immune cells with characteristic DC-phenotype were found to be closely located to SGCs and vagal sensory neurons under physiological conditions. The percentage of DCs in relation to neurons was significantly increased by allergic airway inflammation in comparison to the controls (HDM 51.38 ± 2.38% vs. control 28.16 ± 2.86%, p < 0.001). The present study also demonstrated that DCs were shown to proliferate in jugular-nodose ganglia, however, the proliferation rate of DCs is not significantly changed in the two treated animal groups (proliferating DCs/ total DCs: HDM 0.89 ± 0.38%, vs. control 1.19 ± 0.54%, p = 0.68). Also, increased number of CGRP-positive neurons was found in JNC after allergic sensitisation and challenge (HDM 31.16 ± 5.41% vs. control 7.16 ± 1.53%, p < 0.001).

Conclusion

The present findings suggest that DCs may migrate from outside into the ganglia to interact with sensory neurons enhancing or protecting the allergic airway inflammation. The increase of DCs as well as CGRP-positive neurons in airway ganglia by allergic airway inflammation indicate that intraganglionic DCs and neurons expressing CGRP may contribute to the pathogenesis of bronchial asthma. To understand this neuroimmune interaction in allergic airway inflammation further functional experiments should be carried out in future studies.  相似文献   

8.
Metallothionein (MT) is a free radical scavenger induced by inflammatory stimuli; however, its roles in inflammation have not been fully investigated. In the present study, we genetically determined the role of MT in ozone (O3)-induced lung inflammation using MT-I/II null (–/–) mice. Subacute (65 h) exposure to O3 (0.3 ppm) induced lung inflammation and enhanced vascular permeability, which was significantly greater in MT(–/–) than in corresponding wild-type mice. Electron microscopically, O3 exposure induced vacuolar degeneration of pulmonary endothelial and epithelial cells, and interstitial edema with focal loss of the basement membrane, which was more prominent in MT(–/–) than in wild-type mice. O3 -induced lung expression of interleukin-6 was significantly greater in MT(–/–) than in wild-type mice; however, lung expression of the chemokines examined was comparable in both genotypes of mice in the presence of O3. Following O3 exposure, the formation of oxidative stress-related molecules/adducts, such as heme oxidase-1, inducible nitric oxide synthase, 8-hydroxy-2′-deoxyguanosine, and nitrotyrosine, in the lung was significantly greater in MT(–/–) than in wild-type mice. Collectively, MT protects against O3-induced lung inflammation, at least partly, via the regulation of pulmonary endothelial and epithelial integrity and its antioxidative property.  相似文献   

9.
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9?/? and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9?/? mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9?/? mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9?/? mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder.  相似文献   

10.
The expression of C‐terminal phosphorylated Smad3 (pSmad3C) is down‐regulated with the progression of liver disease. Thus, we hypothesized that pSmad3C expression may be negatively related to liver disease. To develop novel therapeutic strategies, a suitable animal model is required that will allow researchers to study the effect of Smad3 domain‐specific phosphorylation on liver disease progression. The current study aimed to construct a new mouse model with the Smad3 C‐terminal phosphorylation site mutation and to explore the effects of this mutation on CCl4‐induced inflammation. Smad3 C‐terminal phosphorylation site mutant mice were generated using TetraOne? gene fixed‐point knock‐in technology and embryonic stem cell microinjection. Resulting mice were identified by genotyping, and the effects on inflammation were explored in the presence or absence of CCl4. No homozygous mice were born, indicating that the mutation is embryonic lethal. There was no significant difference in liver phenotype and growth between the wild‐type (WT) and heterozygous (HT) mice in the absence of reagent stimulation. After CCl4‐induced acute and chronic liver damage, liver pathology, serum transaminase (ALT/AST) expression and levels of inflammatory factors (IL‐6/TNF‐α) were more severely altered in HT mice than in WT mice. Furthermore, pSmad3C protein levels were lower in liver tissue from HT mice. These results suggest that Smad3 C‐terminal phosphorylation may have a protective effect during the early stages of liver injury. In summary, we have generated a new animal model that will be a novel tool for future research on the effects of Smad3 domain‐specific phosphorylation on liver disease progression.  相似文献   

11.
12.
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.  相似文献   

13.
14.
15.
Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3–5 months) and old (19–24 months) mice. Activation of KrasG12D in old mice resulted in shorter survival and development of higher‐grade lung tumors. Six weeks after KrasG12D activation, old lung tissues contained higher numbers of adenomas than their young tissue counterparts. Lung tumors in old mice displayed higher proliferation rates, as well as attenuated DNA damage and p53 tumor suppressor responses. Gene expression comparison of lung tumors from young and old mice revealed upregulation of extracellular matrix‐related genes in young tumors, indicative of a robust cancer‐associated fibroblast response. In old tumors, numerous inflammation‐related genes such as Ccl7, IL‐1β, Cxcr6, and IL‐15ra were consistently upregulated. Increased numbers of immune cells were localized around the periphery of lung adenomas from old mice. Our experiments indicate that more aggressive lung tumor formation in older KrasG12D mice may be in part the result of subdued tumor suppressor and DNA damage responses, an enhanced inflammatory milieu, and a more accommodating tissue microenvironment.  相似文献   

16.
To probe the role of protein arginine methyltransferase 5 (PRMT5) in regulating inflammation, cell proliferation, migration and invasion of fibroblast‐like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). FLSs were separated from synovial tissues (STs) from patients with RA and osteoarthritis (OA). An inhibitor of PRMT5 (EPZ015666) and short interference RNA (siRNA) against PRMT5 were used to inhibit PRMT5 expression. The standard of protein was measured by Western blot or immunofluorescence. The excretion and genetic expression of inflammatory factors were, respectively, estimated by enzyme‐linked immunosorbent assay (ELISA) and real‐time polymerase chain reaction (PCR). Migration and invasion in vitro were detected by Boyden chamber assay. FLSs proliferation was detected by BrdU incorporation. Increased PRMT5 was discovered in STs and FLSs from patients with RA. In RA FLSs, the level of PRMT5 was up‐regulated by stimulation with IL‐1β and TNF‐α. Inhibition of PRMT5 by EPZ015666 and siRNA‐mediated knockdown reduced IL‐6 and IL‐8 production, and proliferation of RA FLSs. In addition, inhibition of PRMT5 decreased in vitro migration and invasion of RA FLSs. Furthermore, EPZ015666 restrained the phosphorylation of IκB kinaseβ and IκBα, as well as nucleus transsituation of p65 as well as AKT in FLSs. PRMT5 regulated the production of inflammatory factors, cell proliferation, migration and invasion of RA FLS, which was mediated by the NF‐κB and AKT pathways. Our data suggested that targeting PRMT5 to prevent synovial inflammation and destruction might be a promising therapy for RA.  相似文献   

17.
Thirteen mammalian aquaporin (AQP) isoforms have been identified, and they have a unique tissue-specific pattern of expression. AQPs have been documented in the reproductive system of both male and female humans, rats, and mice. However, tissue expression and cellular and subcellular localization of AQPs are unknown in the female reproductive system of pigs. In this study, AQP1 immunoreactivity was detected in the capillary endothelium of the ovary. Distinct immunolabeling of capillary endothelium was also observed in the oviduct and uterus. AQP5 was expressed in flattened follicle cells of primordial follicles, granulosa cells of developing ovarian follicles, and muscle cells of the oviduct and uterus. Staining of AQP5 was also observed in the epithelial cells of the oviduct and uterine epithelium. AQP9 immunoreactivity was observed in granulosa cells of developing follicles. AQP9 was also localized in the luminal epithelial cells of the oviduct and uterine epithelia cells. This is, to our knowledge, the first study that shows tissue expression and cellular and subcellular localization of AQPs in the reproductive system of the female pig. Moreover, these results suggest that several subtypes of the AQPs (AQP1, 5, and 9) are involved in regulation of water homeostasis in the reproductive system of gilts.  相似文献   

18.
Takatori  Kosuke  Saito  Akemi  Yasueda  Hiroshi  Akiyama  Kazuo 《Mycopathologia》2001,152(1):41-49
The effect of house building design and environment on the fungal movement in the houses of 41 bronchial asthma (BA) patients has been investigated by examining house dust. The presence and composition of fungi were determined and compared in relation to building structure, house age, size of living room, main flooring material, presence of a living-room rug or air purifier, and frequency of vacuum cleaning. Among these elements, fungal CFU apparently varied only between building structure: wooden-board houses had significantly higher numbers of fungi than reinforced concrete houses (p < 0.01), and wooden mortar or iron-framed prefabricated houses had significantly higher numbers of fungi than reinforced concrete houses (p < 0.05). Classification of the types of fungi present in the house dust of BA patients showed that, regardless of the building designs, there were high levels of osmophilic fungi (group A) and fungi that survive at relatively dry conditions (group B), whereas fungi that survive in very wet conditions (group D) were present at low frequency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
T‐cell receptor (TCR)‐transgenic mice have been employed for evaluating antigen‐response mechanisms, but their non‐endogenous TCR might induce immune response differently than the physiologically expressed TCR. Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen‐specific CD4+ T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre‐rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic‐type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter‐regulated antigen‐specific TCR are a unique animal model with allergic predisposition for investigating CD4+ T‐cell‐mediated pathogenesis and cellular commitment in immune diseases.  相似文献   

20.
Endometritis is a postnatal reproductive disorder disease, which leads to great economic losses for the modern dairy industry. Emerging evidence indicates that microRNAs (miRNAs) play a pivotal role in a variety of diseases and have been identified as critical regulators of the innate immune response. Recent miRNome profile analysis revealed an altered expression level of miR‐148a in cows with endometritis. Therefore, the present study aims to investigate the regulatory role of miR‐148a in the innate immune response involved in endometritis and estimate its potential therapeutic value. Here, we found that miR‐148a expression in lipopolysaccharide (LPS)‐stimulated endometrial epithelial cells was significantly decreased . Our results also showed that overexpression of miR‐148a using agomiR markedly reduced the production of pro‐inflammatory cytokines, such as IL‐1β and TNF‐α. Moreover, overexpression of miR‐148a also suppressed NF‐κB p65 activation by targeting the TLR4‐mediated pathway. Subsequently, we further verified that miR‐148a repressed TLR4 expression by binding to the 3′‐UTR of TLR4 mRNA. Additionally, an experimental mouse endometritis model was employed to evaluate the therapeutic value of miR‐148a. In vivo studies suggested that up‐regulation of miR‐148a alleviated the inflammatory conditions in the uterus as evidenced by H&E staining, qPCR and Western blot assays, while inhibition of miR‐148a had inverse effects. Collectively, pharmacologic stabilization of miR‐148a represents a novel therapy for endometritis and other inflammation‐related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号