首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hairu Wang  Zhiping Lu  Yukun Liu 《Biometrics》2023,79(2):1268-1279
Missing data are frequently encountered in various disciplines and can be divided into three categories: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Valid statistical approaches to missing data depend crucially on correct identification of the underlying missingness mechanism. Although the problem of testing whether this mechanism is MCAR or MAR has been extensively studied, there has been very little research on testing MAR versus MNAR. A critical challenge that is faced when dealing with this problem is the issue of model identification under MNAR. In this paper, under a logistic model for the missing probability, we develop two score tests for the problem of whether the missingness mechanism is MAR or MNAR under a parametric model and a semiparametric location model on the regression function. The implementation of the score tests circumvents the identification issue as it requires only parameter estimation under the null MAR assumption. Our simulations and analysis of human immunodeficiency virus data show that the score tests have well-controlled type I errors and desirable powers.  相似文献   

2.
Summary .  In this article, we study the estimation of mean response and regression coefficient in semiparametric regression problems when response variable is subject to nonrandom missingness. When the missingness is independent of the response conditional on high-dimensional auxiliary information, the parametric approach may misspecify the relationship between covariates and response while the nonparametric approach is infeasible because of the curse of dimensionality. To overcome this, we study a model-based approach to condense the auxiliary information and estimate the parameters of interest nonparametrically on the condensed covariate space. Our estimators possess the double robustness property, i.e., they are consistent whenever the model for the response given auxiliary covariates or the model for the missingness given auxiliary covariate is correct. We conduct a number of simulations to compare the numerical performance between our estimators and other existing estimators in the current missing data literature, including the propensity score approach and the inverse probability weighted estimating equation. A set of real data is used to illustrate our approach.  相似文献   

3.
Analyzing incomplete longitudinal clinical trial data   总被引:1,自引:0,他引:1  
Using standard missing data taxonomy, due to Rubin and co-workers, and simple algebraic derivations, it is argued that some simple but commonly used methods to handle incomplete longitudinal clinical trial data, such as complete case analyses and methods based on last observation carried forward, require restrictive assumptions and stand on a weaker theoretical foundation than likelihood-based methods developed under the missing at random (MAR) framework. Given the availability of flexible software for analyzing longitudinal sequences of unequal length, implementation of likelihood-based MAR analyses is not limited by computational considerations. While such analyses are valid under the comparatively weak assumption of MAR, the possibility of data missing not at random (MNAR) is difficult to rule out. It is argued, however, that MNAR analyses are, themselves, surrounded with problems and therefore, rather than ignoring MNAR analyses altogether or blindly shifting to them, their optimal place is within sensitivity analysis. The concepts developed here are illustrated using data from three clinical trials, where it is shown that the analysis method may have an impact on the conclusions of the study.  相似文献   

4.
Chen B  Zhou XH 《Biometrics》2011,67(3):830-842
Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.  相似文献   

5.
Liu D  Zhou XH 《Biometrics》2011,67(3):906-916
Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a semiparametric estimation of the covariate-specific ROC curves with a partial missing gold standard. A location-scale model is constructed for the test result to model the covariates' effect, but the residual distributions are left unspecified. Thus the baseline and link functions of the ROC curve both have flexible shapes. With the gold standard missing at random (MAR) assumption, we consider weighted estimating equations for the location-scale parameters, and weighted kernel estimating equations for the residual distributions. Three ROC curve estimators are proposed and compared, namely, imputation-based, inverse probability weighted, and doubly robust estimators. We derive the asymptotic normality of the estimated ROC curve, as well as the analytical form of the standard error estimator. The proposed method is motivated and applied to the data in an Alzheimer's disease research.  相似文献   

6.
In this work, we fit pattern-mixture models to data sets with responses that are potentially missing not at random (MNAR, Little and Rubin, 1987). In estimating the regression parameters that are identifiable, we use the pseudo maximum likelihood method based on exponential families. This procedure provides consistent estimators when the mean structure is correctly specified for each pattern, with further information on the variance structure giving an efficient estimator. The proposed method can be used to handle a variety of continuous and discrete outcomes. A test built on this approach is also developed for model simplification in order to improve efficiency. Simulations are carried out to compare the proposed estimation procedure with other methods. In combination with sensitivity analysis, our approach can be used to fit parsimonious semi-parametric pattern-mixture models to outcomes that are potentially MNAR. We apply the proposed method to an epidemiologic cohort study to examine cognition decline among elderly.  相似文献   

7.
Analysis with time-to-event data in clinical and epidemiological studies often encounters missing covariate values, and the missing at random assumption is commonly adopted, which assumes that missingness depends on the observed data, including the observed outcome which is the minimum of survival and censoring time. However, it is conceivable that in certain settings, missingness of covariate values is related to the survival time but not to the censoring time. This is especially so when covariate missingness is related to an unmeasured variable affected by the patient's illness and prognosis factors at baseline. If this is the case, then the covariate missingness is not at random as the survival time is censored, and it creates a challenge in data analysis. In this article, we propose an approach to deal with such survival-time-dependent covariate missingness based on the well known Cox proportional hazard model. Our method is based on inverse propensity weighting with the propensity estimated by nonparametric kernel regression. Our estimators are consistent and asymptotically normal, and their finite-sample performance is examined through simulation. An application to a real-data example is included for illustration.  相似文献   

8.
Data with missing covariate values but fully observed binary outcomes are an important subset of the missing data challenge. Common approaches are complete case analysis (CCA) and multiple imputation (MI). While CCA relies on missing completely at random (MCAR), MI usually relies on a missing at random (MAR) assumption to produce unbiased results. For MI involving logistic regression models, it is also important to consider several missing not at random (MNAR) conditions under which CCA is asymptotically unbiased and, as we show, MI is also valid in some cases. We use a data application and simulation study to compare the performance of several machine learning and parametric MI methods under a fully conditional specification framework (MI-FCS). Our simulation includes five scenarios involving MCAR, MAR, and MNAR under predictable and nonpredictable conditions, where “predictable” indicates missingness is not associated with the outcome. We build on previous results in the literature to show MI and CCA can both produce unbiased results under more conditions than some analysts may realize. When both approaches were valid, we found that MI-FCS was at least as good as CCA in terms of estimated bias and coverage, and was superior when missingness involved a categorical covariate. We also demonstrate how MNAR sensitivity analysis can build confidence that unbiased results were obtained, including under MNAR-predictable, when CCA and MI are both valid. Since the missingness mechanism cannot be identified from observed data, investigators should compare results from MI and CCA when both are plausibly valid, followed by MNAR sensitivity analysis.  相似文献   

9.
This paper considers statistical inference for the receiver operating characteristic (ROC) curve in the presence of missing biomarker values by utilizing estimating equations (EEs) together with smoothed empirical likelihood (SEL). Three approaches are developed to estimate ROC curve and construct its SEL-based confidence intervals based on the kernel-assisted EE imputation, multiple imputation, and hybrid imputation combining the inverse probability weighted imputation and multiple imputation. Under some regularity conditions, we show asymptotic properties of the proposed maximum SEL estimators for ROC curve. Simulation studies are conducted to investigate the performance of the proposed SEL approaches. An example is illustrated by the proposed methodologies. Empirical results show that the hybrid imputation method behaves better than the kernel-assisted and multiple imputation methods, and the proposed three SEL methods outperform existing nonparametric method.  相似文献   

10.
Methods in the literature for missing covariate data in survival models have relied on the missing at random (MAR) assumption to render regression parameters identifiable. MAR means that missingness can depend on the observed exit time, and whether or not that exit is a failure or a censoring event. By considering ways in which missingness of covariate X could depend on the true but possibly censored failure time T and the true censoring time C, we attempt to identify missingness mechanisms which would yield MAR data. We find that, under various reasonable assumptions about how missingness might depend on T and/or C, additional strong assumptions are needed to obtain MAR. We conclude that MAR is difficult to justify in practical applications. One exception arises when missingness is independent of T, and C is independent of the value of the missing X. As alternatives to MAR, we propose two new missingness assumptions. In one, the missingness depends on T but not on C; in the other, the situation is reversed. For each, we show that the failure time model is identifiable. When missingness is independent of T, we show that the naive complete record analysis will yield a consistent estimator of the failure time distribution. When missingness is independent of C, we develop a complete record likelihood function and a corresponding estimator for parametric failure time models. We propose analyses to evaluate the plausibility of either assumption in a particular data set, and illustrate the ideas using data from the literature on this problem.  相似文献   

11.
Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. DR estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a DR estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing DR methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial.  相似文献   

12.
Generalized additive models (GAMs) have been widely used for flexible modeling of various types of outcomes. When the outcome in a GAM is subject to missing, practical analyses often assume that missingness is missing at random (MAR). This assumption can be of suspicion when the missingness is not by design. Evaluating the potential effects of alternative nonignorable missing data mechanism on the MAR inference from a GAM can be important but often challenging due to the complicatedness of alternative nonignorable models. We apply the index approach to local sensitivity (Troxel, Ma, and Heitjan 2004 (2004). Statistica Sinica 14 , 1221–1237) to evaluate the potential changes of the GAM estimates in the neighborhood of the MAR model. The approach avoids fitting any complicated nonignorable GAM. Only MAR estimates are required to calculate the resulting sensitivity index and adjust the GAM estimates to account for nonignorable missingness. Thus the proposed approach is considerably simpler to conduct, as compared with the alternative methods. The simulation study shows that the index provides valid assessment of the local sensitivity of the GAM estimates to nonignorable missingness. We then illustrate the method using a rheumatoid arthritis clinical trial data set.  相似文献   

13.
Logically defined outcomes are commonly used in medical diagnoses and epidemiological research. When missing values in the original outcomes exist, the method of handling the missingness can have unintended consequences, even if the original outcomes are missing completely at random. In this note, we consider 2 binary original outcomes, which are missing completely at random. For estimating the prevalence of a logically defined "or" outcome, we discuss the properties of 4 estimators: the complete-case estimator, the available-case estimator, the maximum likelihood estimator (MLE), and a moment-based estimator. With the exception of the available-case case estimator, all the estimators are consistent. The MLE exhibits superior performance and should be generally adopted.  相似文献   

14.
Summary In estimation of the ROC curve, when the true disease status is subject to nonignorable missingness, the observed likelihood involves the missing mechanism given by a selection model. In this article, we proposed a likelihood‐based approach to estimate the ROC curve and the area under the ROC curve when the verification bias is nonignorable. We specified a parametric disease model in order to make the nonignorable selection model identifiable. With the estimated verification and disease probabilities, we constructed four types of empirical estimates of the ROC curve and its area based on imputation and reweighting methods. In practice, a reasonably large sample size is required to estimate the nonignorable selection model in our settings. Simulation studies showed that all four estimators of ROC area performed well, and imputation estimators were generally more efficient than the other estimators proposed. We applied the proposed method to a data set from research in Alzheimer's disease.  相似文献   

15.
For regression with covariates missing not at random where the missingness depends on the missing covariate values, complete-case (CC) analysis leads to consistent estimation when the missingness is independent of the response given all covariates, but it may not have the desired level of efficiency. We propose a general empirical likelihood framework to improve estimation efficiency over the CC analysis. We expand on methods in Bartlett et al. (2014, Biostatistics 15 , 719–730) and Xie and Zhang (2017, Int J Biostat 13 , 1–20) that improve efficiency by modeling the missingness probability conditional on the response and fully observed covariates by allowing the possibility of modeling other data distribution-related quantities. We also give guidelines on what quantities to model and demonstrate that our proposal has the potential to yield smaller biases than existing methods when the missingness probability model is incorrect. Simulation studies are presented, as well as an application to data collected from the US National Health and Nutrition Examination Survey.  相似文献   

16.
17.
The efficiencies of the estimators in the linear logistic regression model are examined using simulations under six missing value treatments. These treatments use either the maximum likelihood or the discriminant function approach in the estimation of the regression coefficients. Missing values are assumed to occur at random. The cases of multivariate normal and dichotomous independent variables are both considered. We found that in general, there is no uniformly best method. However, mean substitution and discriminant function estimation using existing pairs of values for correlations turn out to be favourable for the cases considered.  相似文献   

18.
This work develops a joint model selection criterion for simultaneously selecting the marginal mean regression and the correlation/covariance structure in longitudinal data analysis where both the outcome and the covariate variables may be subject to general intermittent patterns of missingness under the missing at random mechanism. The new proposal, termed “joint longitudinal information criterion” (JLIC), is based on the expected quadratic error for assessing model adequacy, and the second‐order weighted generalized estimating equation (WGEE) estimation for mean and covariance models. Simulation results reveal that JLIC outperforms existing methods performing model selection for the mean regression and the correlation structure in a two stage and hence separate manner. We apply the proposal to a longitudinal study to identify factors associated with life satisfaction in the elderly of Taiwan.  相似文献   

19.
Imputation, weighting, direct likelihood, and direct Bayesian inference (Rubin, 1976) are important approaches for missing data regression. Many useful semiparametric estimators have been developed for regression analysis of data with missing covariates or outcomes. It has been established that some semiparametric estimators are asymptotically equivalent, but it has not been shown that many are numerically the same. We applied some existing methods to a bladder cancer case-control study and noted that they were the same numerically when the observed covariates and outcomes are categorical. To understand the analytical background of this finding, we further show that when observed covariates and outcomes are categorical, some estimators are not only asymptotically equivalent but also actually numerically identical. That is, although their estimating equations are different, they lead numerically to exactly the same root. This includes a simple weighted estimator, an augmented weighted estimator, and a mean-score estimator. The numerical equivalence may elucidate the relationship between imputing scores and weighted estimation procedures.  相似文献   

20.
We propose a method to estimate the regression coefficients in a competing risks model where the cause-specific hazard for the cause of interest is related to covariates through a proportional hazards relationship and when cause of failure is missing for some individuals. We use multiple imputation procedures to impute missing cause of failure, where the probability that a missing cause is the cause of interest may depend on auxiliary covariates, and combine the maximum partial likelihood estimators computed from several imputed data sets into an estimator that is consistent and asymptotically normal. A consistent estimator for the asymptotic variance is also derived. Simulation results suggest the relevance of the theory in finite samples. Results are also illustrated with data from a breast cancer study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号