首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The "mid-domain effect" (MDE) has received much attention as a candidate explanation for patterns in species richness over large geographic areas. Mid-domain models generate a central peak in richness when species ranges are placed randomly within a bounded geographic area (i.e. the domain). Until now, domain limits have been described mostly in one-dimension, usually latitude or elevation, and only occasionally in two-dimensions. Here we test 1-D, 2-D and, for the first time, 3-D mid-domain models and assess the effects of geometric constraints on species richness in North American amphibian, bird, mammal and tree species. Using spatially lagged simultaneous autoregressive models, empirical richness was predicted quite well by the mid-domain predictions and the spatial autoregressive term (45–92% R2). However, our results show that empirical species richness peaks do deviate from those of the MDE predictions in 3 dimensions. Variation explained (R2) by MDE predictions generally increased with increasing mean range size of the different biotic groups (from amphibian, to tree, mammal and finally bird data), and decreased with increasing dimensions being accounted for in the models. The results suggest geometric constraints alone can explain much of the variation in species richness with elevation, specifically with respect to the larger-range taxa, birds and mammals. Our analysis addresses many of the recent methodological criticisms directed at studies testing the MDE, and our results support the hypothesis that species diversity patterns are influenced by geometric constraints.  相似文献   

2.
3.
4.
1. Local assemblage structure, from a deterministic perspective, is presumably dictated by the regional species pool as well as regulated by local factors. We examined the relationships of the regional species pool and local hydrological characteristics to local species richness of North American freshwater fishes using data sets collected during the National Water Quality Assessment program conducted by the United States Geological Survey. 2. We predicted that local species richness is ultimately constrained by the composition of the regional species pool and further associated with local hydrological factors. Moreover, we predicted that variation in local species richness within major families can be explained by different combinations of hydrological characteristics that represent lineage‐specific responses to the environment. 3. Daily discharge and regional and local species richness data were assembled from 41 stream localities across the United States. Multiple stepwise regressions were conducted to predict local species richness, based on regional species richness, mean discharge and hydrological characteristics quantified by nine variables characterising flow variability. Species richness at each site was calculated for the entire assemblage as well as within the four most species‐rich families in the data set (Catostomidae, Centrarchidae, Cyprinidae and Percidae). 4. Local species richness was best predicted by a combination of regional species richness and discharge magnitude when all species were considered. Regional species richness was a significant explanatory variable of local species richness for three of four families (Catostomidae, Centrarchidae, Cyprinidae), but not for Percidae. Local richness in Centrarchidae and Cyprinidae was positively correlated with temporal flow variability as well as high and low flow duration, respectively, while richness in Catostomidae and Percidae tended to be associated with discharge volume. In addition, local species richness for three of the four major families was positively correlated with species richness of the other families in the assemblage, potentially suggesting the influence of local habitat quality and heterogeneity. 5. Results suggest the importance of the combined influences of the regional species pool and local hydrological characteristics on local richness in freshwater fishes, with variation in richness within each family predicted by different characteristics of flow regimes.  相似文献   

5.
We present an analysis of local species richness in neotropical forests, based on a number of 0.1 ha samples of woody plants collected by the late Alwyn Gentry. For each of 69 forests, soils were analysed and climatic data were collated. Using transformed independent variables and interaction terms, multiple regression equations were developed that explained the greatest possible amount of variation in species richness, and the best equations were selected on the basis of regression diagnostics. The best models are presented for (a) all neotropical forests, (b) forests west of the Andes (transandean) and (c) east of the Andes (cisandean), and for various subsets based on elevation and annual rainfall. For the whole dataset, and for most subsets, annual rainfall and rainfall seasonality were the most important variables for explaining species richness. Soil variables were correlated with precipitation — drier forests have more nutrient-rich soils. After the inclusion of rainfall variables, available soil nutrient concentrations contributed little to explaining or accounting for additional variation in species numbers, indicating that tropical forest species richness is surprisingly independent of soil quality. The results are consistent with the hypothesis that plants in mature tropical forests may obtain nutrients through the process of direct cycling, in which mineral nutrients are extracted from litterfall before they enter the soil. The strong relationship between community species richness and rainfall patterns has implications for biodiversity conservation. Wet forests with an ample year-round moisture supply harbour the greatest number of woody plant species and should be a focus of conservation efforts.Died 3 August 1993.  相似文献   

6.
Geographic patterns of species richness are influenced by many factors, but the role of shared physiographical and physiological boundaries in relation to range-size distributions has been surprisingly neglected, in spite of the fact that such geometric constraints lead to mid-domain richness peaks even without environmental gradients (the mid-domain effect). Relying on null models, several recent studies have begun to quantify this problem using simulated and empirical data. This approach promises to transform how we perceive geographic variation in diversity, including the long unresolved latitudinal gradient in species richness. The question is not whether geometry affects such patterns, but by how much.  相似文献   

7.
8.
Aim To determine how species richness, abundance, biomass, energy use and mean number of individuals per species scale with environmental energy availability in wintering and breeding avian assemblages, and to contrast assemblages of (i) common and rare species and (ii) breeding residents and migrants. To assess whether such patterns are compatible with the ‘more individuals hypothesis’ (MIH) that high‐energy areas are species‐rich because they support larger populations that are buffered against extinction. Location The North American continent (latitudinal range 23.4 °?48.1 °N; longitudinal range 124.2°?68.7° W). Methods Avian species richness, abundance, biomass and energy use were calculated for 295 Resident Bird Count plots. Environmental energy availability was measured using ambient temperature and the Normalized Difference Vegetation Index (NDVI), a close correlate of plant productivity. Analyses took plot area into account, and were conducted (with and without taking habitat type into account) using general linear models and spatial mixed models. Results Positive species–energy relationships were exhibited by both wintering and breeding assemblages, but were stronger in the former. The structure of winter assemblages responded more strongly to temperature than NDVI, while breeding assemblages tended to respond more strongly to NDVI. Breeding residents responded to annual measures of energy availability while breeding migrants and the winter assemblage responded more strongly to seasonal measures. In the winter assemblage, rare and common species exhibited species–energy relationships of a similar strength, but common breeding species exhibited a much stronger relationship than rare breeding species. In both breeding and wintering assemblages, abundance, biomass and energy use increased with energy availability and species richness. Energy availability was a poor predictor of the mean number of individuals per species. Main conclusions The nature of the species–energy relationship varies seasonally and with the manner in which energy availability is measured. Our data suggest that residents are less able to respond to seasonal fluxes in resource availability than long‐distance migrants. Increasing species richness and energy availability is associated with increasing numbers of individuals, biomass and energy use. While these observations are compatible with the MIH our data provide only equivocal support for this hypothesis, as the rarest species do not exhibit the strongest species–energy relationships.  相似文献   

9.
Correlates of species richness in North American bat families   总被引:2,自引:1,他引:1  
Aim A near universal truth in North America is that species richness increases from the Arctic Circle to the Central American tropics. Latitude is regarded as a major explanatory variable in species density, although it is only a surrogate for underlying ecological variables. I aimed to elucidate those underlying ecological variables that are associated with variation in bat species richness across the entire North American continent, providing a portrait of the macroecology of the order Chiroptera and its familial components. Methods I determined the number of bat species recorded for every state in Mexico and the United States, every province or territory in Canada, and every country in Central America. For each of these entities (n = 99), I also gathered basic data on mean annual precipitation, variation across the year (July vs. January) in mean temperature, mean January temperature, range in elevation (topographic relief), per cent vegetative cover and median latitude. Using a variety of linear regression and model‐fitting techniques, I analysed the strength and direction of the relationship between species richness and environmental variables for the order Chiroptera as a whole and separately for each of four familial groups: Molossidae (free‐tailed bats), Phyllostomidae (New World leaf‐nosed bats), Vespertilionidae (evening bats), and a set of six families (the Desmodontidae, Emballonuridae, Furipteridae, Natalidae, Noctilionidae, and Thyropteridae) represented in North America relatively poorly. Results and main conclusions Save for the Vespertilionidae, species richness of bats increased towards the Panamanian Isthmus. The Phyllostomidae and the set of miscellaneous families are particularly speciose in tropical Central America, with many fewer species occurring through subtropical Mexico into (in some cases) the southernmost United States. The Molossidae extends farther north, sparingly into the middle of the United States. Species density of the Vespertilionidae peaks in central and western Mexico and the southernmost United States, declining south through tropical southern Mexico and Central America and north through the central United States into Canada. Annual precipitation, January temperature, and topography are good predictors of species richness in the Chiroptera and the Molossidae, precipitation, topography, and temperature range in the Phyllostomidae, January temperature and topography in the Vespertilionidae, and precipitation alone in the collection of families. Vegetative cover explained little variation in the Chiroptera as a whole or in any family. After accounting for the effects of the environmental variables, latitude explained an insignificant amount of the residual variation in species richness. Bat families differ in their ecology, so studies of bat biogeography in North America may be misleading if they are examined only at the ordinal level.  相似文献   

10.
We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism.  相似文献   

11.
Species will respond individually to climate change and this poses a challenge for modeling climate–vegetation dynamics using broader taxonomic or biogeographical classifications. Additionally, responses to climate and environmental conditions may shift with ontogeny, further complicating efforts to understand the likely rates and directions of vegetation change. We measured emergence, leaf‐out rate, growth, and survival of first‐year seedlings in response to warming, precipitation regime shifts, and seedbed condition (leaf litter presence/absence). We grouped species into three levels of organization (species‐specific, biome‐level and broad taxonomic group) and hypothesized that most metrics of seedling performance would be best described by species‐specific models, as even similar species may respond in vastly different ways to global change. Results showed that the species‐specific model was the best fit for emergence and development rates, whereas growth and survival could be captured through broader groupings, with the broadleaf temperate group exhibiting the greatest growth and conifers the shortest survival times. The sign and magnitude of response to climate and seedbed condition varied with treatment combinations and metric of performance. For example, seedlings grew more in response to warming, but conditions too dry or too wet limited this positive response. Also, warmer temperatures generally increased emergence, development, and growth, but decreased survival, whereas leaf litter presence decreased emergence and slowed development, but increased survival. The results presented here are for first‐year seedlings and in many cases the responses are different from other studies using older plants. Future research and climate vegetation modeling needs to assess performance at multiple development stages and determine where key bottleneck phases for population growth occur for individual species.  相似文献   

12.
Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora as our study system, we implemented a novel approach to assess the relative importance of local and regional mechanisms that control local species richness. We first identified species pools that tolerate particular local environments and quantified the proportion of the pool that is present locally, i.e. the realized/potential (R/P) richness ratio. Because no consensus exists on how to estimate potential richness, we estimated it using three different approaches. Using these three estimates separately and in a combined ensemble estimate, we then analyzed the effects of potential drivers on R/P richness ratios. We predicted that the R/P richness ratio would 1) increase with decreasing distance from glacial refugia (accessibility), 2) and be generally low in geographically fragmented southern Europe because of dispersal limitation; 3) increase with actual evapotranspiration because greater availability of water and energy promotes local population persistence; and 4) increase with topographic heterogeneity because it promotes local species coexistence and facilitates long‐term species survival. There was considerable variation among the three R/P richness ratio estimates, but we found consistent support for a negative effect of regional geographic fragmentation and a positive topographic effect. We also identified fairly broad support for the predicted effect of accessibility. We conclude that local tree assemblages in Europe often fail to realize a large proportion of the potential richness held in the regional species pool, partially reflecting their geographical, historical, and environmental circumstances. The dispersal‐related effects of geographic fragmentation and accessibility exemplify regional controls that combine with local ecological sorting to determine local species richness.  相似文献   

13.
We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor – a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon‐specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.  相似文献   

14.
15.
A decline in species richness moving from equatorial regions to polar regions is a common, but not universal, macroecological pattern. Many studies have focused on this pattern, but few have focused on how the vital rates responsible for species richness patterns, local rates of species extinction and turnover, vary with latitude. We examine patterns of richness, turnover and extinction in North American avian communities inhabiting three ecoregions, using methods that account for failure to detect all species present. We use breeding bird point count data from > 1000 routes in the Breeding Bird Survey collected from 1982 to 2001 to estimate richness, extinction probability and turnover rates. Our analyses differ from others in 1) the use of annual estimates derived at specific locations rather than index data accumulated over numbers of years, 2) the use of estimators that incorporated detection probabilities and 3) a focus on dynamical processes (colonization, extinction) in addition to static patterns (species richness). We find average species richness estimates (48 to 135 species) increasing with latitude for all three regions, contradicting predictions based on the latitudinal diversity gradient. The estimated rates of extinction and turnover declined with latitude across the three ecoregions. We speculate that higher richness might be linked to periods of superabundant food supply in northern areas that support greater numbers of resident and migrant species. Our primary ecological conclusions are that the latitudinal gradient in species richness is reversed for North American birds in the studied ecoregions, and that both local extinction and turnover decrease from southern to northern latitudes. Thus, the vital rates that determine richness show evidence of greater stability and reduced dynamics in northern areas of higher richness. We recommend additional studies examining patterns of colonization, extinction and turnover in communities, that use clearly defined estimators that deal with detection probability.  相似文献   

16.
Aim We explore the potential role of the ‘tropical conservatism hypothesis’ in explaining the butterfly species richness gradient in North America. Its applicability can be derived from the tropical origin of butterflies and the presumed difficulties in evolving the cold tolerance required to permit the colonization and permanent occupation of the temperate zone. Location North America. Methods Digitized range maps for butterfly species north of Mexico were used to map richness for all species, species with distributions north of the Tropic of Capricorn (Extratropicals), and species that also occupy the tropics (Tropicals). A phylogeny resolved to subfamily was used to map the geographical pattern of mean root distance, a metric of the evolutionary development of assemblages. Regression models and general linear models examined environmental correlates of overall richness and for Extratropicals vs. Tropicals, patterns in summer vs. winter, and patterns in northern vs. southern North America. Results Species in more basal subfamilies dominate the south, whereas more derived clades occupy the north. There is also a ‘latitudinal’ richness gradient in Canada/Alaska, whereas in the conterminous USA richness primarily varies longitudinally. Overall richness is associated with broad‐ and mesoscale temperature gradients. The richness of Tropicals is strongly associated with temperature and distance from winter population sources. The richness of Extratropicals in the north is most strongly correlated with the pattern of glacial retreat since the more recent Ice Age, whereas in the south, richness is positively associated with the range of temperatures in mountains and the presence of forests but is negatively correlated with the broad‐scale temperature gradient. Main conclusions The tropical conservatism hypothesis provides a possible explanation for the complex structure of the species richness gradient. The Canada/Alaska fauna comprises temperate, boreal and tundra species that are nevertheless constrained by cold climates and limited vegetation, coupled with possible post‐Pleistocene recolonization lags. In the USA tropical species are constrained by temperature in winter as well as recolonization distances in summer, whereas temperate‐zone groups are richer in cooler climates in mountains and forests, where winter conditions are more suitable for diapause. The evolution of cold tolerance is key to both the evolutionary and ecological patterns.  相似文献   

17.
Recently, the hypothesis that the geographic distribution of species could be influenced by the shape of the domain edges, the so-called Mid-Domain Effect (MDE), has been included as one of the five credible hypotheses for explaining spatial gradients in species richness, despite all the unsuccessful current attempts to prove empirically the validity of MDE. We used data on spatial worldwide distributions of Falconiformes to evaluate the validity of MDE assumptions, incorporated into two different sorts of null models at a global level and separately across five domains/landmasses. Species richness values predicted by the null models of the MDE and those values predicted by Net Primary Productivity, a surrogate variable expressing the effect of available energy, were compared in order to evaluate which hypothesis better predicts the observed values. Our tests showed that MDE continues to lack empirical support, regardless of its current acceptability, and so, does not deserve to be classified as one possible explanation of species richness gradients.  相似文献   

18.
The proximal humerus is formed by three secondary ossification centers during the postnatal trajectory of the human infant. The ossification centers later grow into the structures of the articular surface, major tubercle, and minor tubercle. There is a purported functional division between the articular surface and the tubercles, with the articular surface mainly responsible for the range of movement of the shoulder joint, and the tubercles bearing the insertions of the rotator cuff muscles, mainly devoted to securing the joint against humeral displacement. Using three‐dimensional geometric morphometrics, we tested the presence of such developmental and functional divisions in the proximal humerus, applying the RV coefficient of Escoufier to these a priori hypothesized modules. Our results indicate that the proximal humerus might be a generally integrated structure. However, a weak signal for modular configuration was present, with slightly stronger support for the two modules depicting the boundaries between the purported functional regions of the epiphysis: the articular surface and the tubercles. Am J Phys Anthropol 154:459–465, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
We tested the effects of temperature, humidity and geographical constraints upon butterfly species richness along an elevational gradient covering an altitude ranging from 117 to 3,104 m above sea level (m. a.s.l.), in Southern Mexico. Ten transect sites were sampled 219 times from May 2010 to May 2011, along the elevational gradient to estimate range and population abundance of butterfly species. The effects of temperature, humidity and geometric constraints (mid-domain effects) on species richness along the study gradient were assessed using ordinary least squares regression. A total of 7,005 specimens representing 193 species were recorded. Species richness was relatively higher at elevations between 117 and 1,000 m. a.s.l. with an observed decline in richness values as elevation increased. Butterfly species richness along the study environmental gradient was predominantly determined by climatic constraints, rather than geometric constraints—a mid-domain model fit well only for large-ranged Pieridae species. Temperature and humidity explained the variation species richness for the entire butterfly community and for the three families evaluated; however the effect of predictor variables varied according to the measure of species richness and taxonomic family. This discrepancy in the response of butterfly richness to temperature, humidity and geometric constraints emphasizes the need to evaluate the response of different taxa to elevational gradients, to establish general patterns that help us to prioritize conservation measures that reduce population declines and local extinctions predicted by climate change in highly diverse tropical mountain ecosystems.  相似文献   

20.
The metabolic theory of ecology (MTE) endeavours to explain ecosystem structure and function in terms of the effects of temperature and body size on metabolic rate. In a recent paper (Wang et al., 2009, Proceedings of the National Academy of Sciences USA, 106 , 13388), we tested the MTE predictions of species richness using tree distributions in eastern Asia and North America. Our results supported the linear relationship between log‐transformed species richness and the inverse of absolute temperature predicted by the MTE, but the slope strongly depends on spatial scale. The results also indicate that there are more tree species in cold climate at high latitudes in North America than in eastern Asia, but the reverse is true in warm climate at low latitudes. Qian & Ricklefs (2011, Global Ecology and Biogeography, 20 , 362–365) recently questioned our data and some of the analyses. Here we reply to them, and provide further analyses to show that their critiques are primarily based on unsuitable data and subjective conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号