首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Tatyana A. Rand 《Oecologia》1999,121(1):39-46
The susceptibility of plants to attack by insect herbivores often depends on local environmental conditions. This study documents variation in herbivore damage by the chrysomelid beetle Erynephala maritima to the annual forb Atriplex patula in two microhabitats within New England salt marshes: bare patches and dense matrix vegetation. Environmental conditions within bare patches differ from those within matrix vegetation in a number of ways. Bare patches are characterized by the absence of perennial grasses and rushes (matrix vegetation) and greater levels of physical stress, and are rapidly colonized by the fugitive annual, Salicornia europaea, a second host plant of these beetles. Surveys of herbivore damage across three marshes revealed that A. patula in bare patches had a greater proportion of leaves damaged by beetles than those within matrix vegetation. Presence or absence of matrix vegetation and presence or absence of S. europaea were experimentally manipulated to determine the proximate cause of this pattern. The presence of S. europaea significantly increased the susceptibility of A. patula to herbivory in experimental plots. Both the extent of herbivore damage to plants and the proportion of plants damaged through time were greater in treatments with S. europaea than in controls, regardless of the presence or absence of matrix vegetation. Plants in S. europaea addition treatments were also less likely to survive to reproduction. Decreased survival appears to result from increased herbivory, suggesting that the negative effect of S. europaea on A. patula is mediated indirectly through shared insect herbivores. These results support the hypothesis that indirect interactions between alternative host plants, mediated by insect herbivores, can be important in natural communities. Received: 9 January 1999 / Accepted: 29 April 1999  相似文献   

2.
Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.  相似文献   

3.
Flooding and salinity stress are predicted to increase in coastal Louisiana as relative sea level rise (RSLR) continues in the Gulf of Mexico region. Although wetland plant species are adapted to these stressors, questions persist as to how marshes may respond to changed abiotic variables caused by RSLR, and how herbivory by native and non-native mammals may affect this response. The effects of altered flooding and salinity on coastal marsh communities were examined in two field experiments that simultaneously manipulated herbivore pressure. Marsh sods subjected to increased or decreased flooding (by lowering or raising sods, respectively), and increased or decreased salinity (by reciprocally transplanting sods between a brackish and fresh marsh), were monitored inside and outside mammalian herbivore exclosures for three growing seasons. Increased flooding stress reduced species numbers and biomass; alleviating flooding stress did not significantly alter species numbers while community biomass increased. Increased salinity reduced species numbers and biomass, more so if herbivores were present. Decreasing salinity had an unexpected effect: herbivores selectively consumed plants transplanted from the higher-salinity site. In plots protected from herbivory, decreased salinity had little effect on species numbers or biomass, but community composition changed. Overall, herbivore pressure further reduced species richness and biomass under conditions of increased flooding and increased salinity, supporting other findings that coastal marsh species can tolerate increasingly stressful conditions unless another factor, e.g., herbivory, is also present. Also, species dropped out of more stressful treatments much faster than they were added when stresses were alleviated, likely due to restrictions on dispersal. The rate at which plant communities will shift as a result of changed abiotic variables will determine if marshes remain viable when subjected to RSLR. Received: 8 April 1998 / Accepted: 15 June 1998  相似文献   

4.
In different ecosystems herbivores highly prefer particular plant species. This is often explained in a stoichiometric framework of nutrient‐based plant adaptations to herbivory. We hypothesize that such super‐palatability can also arise as an evolutionary by‐product of osmoregulatory adaptations of plants to stressful environmental conditions, as salinity, drought and cold. Here, we investigate in a coastal salt marsh why some plant species are highly preferred by migratory brent geese Branta bernicla bernicla in spring while others are avoided. This salt marsh is an important spring staging site for the geese. Sufficient energy storage in a short period is critical to enable their northward migration to Siberia and subsequent reproduction. We test if geese prefer plants that balance their internal osmotic potential with the saline environment through energy‐rich soluble sugars over plant species that use (compartmentalized) salts for this. We find that plant nitrogen and acid detergent fiber content, classic predictors of herbivore preferences, poorly explain which plants the geese prefer. Instead, plant species that are highly preferred by the geese adapt to salinity by high soluble sugar concentrations while avoided species do this by high plant salt concentrations. Thus, the type of osmoregulatory adaptation to stress displayed by different plant species is a good predictor for the food preference of geese on this salt marsh. We suggest that variation in other types of osmoregulation‐based stress adaptations, as plant cold adaptations in tundras and plant drought adaptations in savannas, have similar important consequences for trophic interactions.  相似文献   

5.
Questions: Do current models that predict shifting effects of herbivores on plant diversity with varying nutrient conditions apply to stressful systems like salt marshes? Do herbivores affect different components of the diversity as nutrient availability varies? Location: Salt marsh–salty steppe transition zone at the SW Atlantic Mar Chiquita coastal lagoon (37°44′52″S, 57°26′6″W), Argentina. Methods: We experimentally evaluated the separate and interactive effect of nutrients and rodent (Cavia aperea) herbivory, using exclosures and applying fertilizer (mostly nitrogen), following a factorial design in 50 cm × 50 cm plots. Results: We found a negative effect of herbivory on diversity in the resource‐poor scenario (due to a reduction in species richness), but a positive effect when nutrients were added, by reducing the abundance of the dominant plant (and hence increasing evenness). Conclusions: Our experimental results contribute to the limited factorial evidence evaluating the role of nutrients and herbivory on the diversity of terrestrial plant communities, even in highly stressful environments like salt marsh–salty steppe transition zones. Our results also support the model that predicts negative effects of herbivores on plant diversity in low‐nutrient conditions and positive effects in nutrient‐enriched scenarios, and also support the mechanism assumed to act in these situations.  相似文献   

6.
Increasing evidence has shown that nutrients and consumers interact to control primary productivity in natural systems, but how abiotic stress affects this interaction is unclear. Moreover, while herbivores can strongly impact zonation patterns in a variety of systems, there are few examples of this in salt marshes. We evaluated the effect of nutrients and herbivores on the productivity and distribution of the cordgrass Spartina densiflora along an intertidal stress gradient, in a Southwestern Atlantic salt marsh. We characterized abiotic stresses (salinity, ammonium concentration, and anoxia) and manipulated nutrients and the presence of the herbivorous crab Neohelice (Chasmagnathus) granulata, at different tidal heights with a factorial experiment. Abiotic stress increased at both ends of the tidal gradient. Salinity and anoxia were highest at the upper and lower edge of the intertidal, respectively. Nutrients and herbivory interacted to control cordgrass biomass, but their relative importance varied with environmental context. Herbivory increased at lower tidal heights to the point that cordgrass transplants onto bare mud substrate were entirely consumed unless crabs were excluded, while nutrients were most important where abiotic stress was reduced. Our results show how the impact of herbivores and nutrients on plant productivity can be dependent on environmental conditions and that the lower intertidal limits of marsh plants can be controlled by herbivory.  相似文献   

7.
Tatyana A. Rand 《Oecologia》2002,132(4):549-558
Herbivore damage and impact on plants often varies spatially across environmental gradients. Although such variation has been hypothesized to influence plant distribution, few quantitative evaluations exist. In this study I evaluated patterns of insect herbivory on an annual forb, Atriplex patula var. hastata, across a salt marsh tidal gradient, and performed experiments to examine potential causes and consequences of variation in herbivory. Damage to plants was generally twice as great at mid-tidal elevations, which are more frequently inundated, than at higher, less stressful, elevations at five of six surveyed sites. Field herbivore assays and herbivore preference experiments eliminated the hypothesis that plant damage was mediated by herbivore response to differences in host plants across the gradient. Alternately, greater herbivore densities in the mid-marsh, where densities of an alternate host plant (Salicornia europaea) were high, were associated with greater levels of herbivory on Atriplex, suggesting spillover effects. The effect of insect herbivores on host plant performance varied between the two sites studied more intensively. Where overall herbivore damage to plants was low, herbivory had no detectable effect on plant survival or seed production, and plant performance did not significantly differ between zones. However, where herbivore damage was high, herbivores dramatically reduced both plant survival (>50%) and fruit production (40-70%), and their effects were stronger in the harsher mid-marsh than the high marsh. Thus herbivores likely play a role in maintaining lower Atriplex densities in mid-marsh. Overall, these results suggest that variation in herbivore pressure can be an important determinant of patterns of plant abundance across environmental gradients.  相似文献   

8.
Summary Seedling recruitment in salt marsh plant communities is generally precluded in dense vegetation by competition from adults, but is also relatively rare in disturbance-generated bare space. We examined the constraints on seedling recruitment in New England salt marsh bare patches. Under typical bare patch conditions seed germination is severely limited by high substrate salinities. We examined the germination requirements of common high marsh plants and found that except for one notably patch-dependent fugitive species, the germination of high marsh plants is strongly inhibited by the high soil salinities routinely encountered in natural bare patches. Watering high marsh soil in the greenhouse to alleviate salt stress resulted in the emergence of up to 600 seedlings/225 cm2. The vast majority of this seed bank consisted of Juncus gerardi, the only common high marsh plant with high seed set. We tested the hypothesis that salt stress limits seedling contributions to marsh patch secondary succession in the field. Watering bare patches with fresh water partially alleviated patch soil salinities and dramatically increased both the emergence and survival of seedlings. Our results show that seedling recruitment by high marsh perennial turfs is limited by high soil salinities and that consequently their population dynamics are determined primarily by clonal growth processes. In contrast, populations of patch-dependent fugitive marsh plants which cannot colonize vegetatively are likely governed by spatially and temporally unpredictable windows of low salinities in bare patches.  相似文献   

9.
Traditionally, salt marsh ecosystems were thought to be controlled exclusively by bottom–up processes. Recently, this paradigm has shifted to include top–down control as an additional primary factor regulating salt‐marsh community structure. The most recent research on consumer impacts in southern US marshes has shown that top–down forces often interact with biotic and abiotic factors, such as secondary fungal infection in grazer‐induced wounds, soil nutrients and climatic variation, to influence ecosystem structure. In a more northern salt marsh, located in New England, we examined the separate and interactive effects of nutrient availability, insect herbivory and secondary fungal infection, on growth of the foundation species, Spartina alterniflora. We used a factorial design with two levels of nutrients (control and addition) insects (control and removal) and fungi (control and removal). Nutrient addition increased plant biomass by 131% in the absence of herbivores. When insect consumers were allowed access to fertilized plots, biomass was reduced by nearly 45% when compared with treatments with nutrients and insecticide. In contrast, insect herbivores did not affect plant biomass in unfertilized control treatments. These differences suggest that consumer effects are triggered under high nutrient levels only. We also found that secondary fungal infections in grazer‐induced wounds, in contrast to lower latitude marshes, did not significantly impact primary production. Our results suggest that while New England salt marshes may typically be under bottom–up control, eutrophication can trigger dual control with inclusion of top–down regulation. However, unlike lower latitude marshes, consumer control of plant growth in northern US salt marshes is not dependent on herbivores facilitating fungal infections that then control grass growth, suggesting that the intensity of disease mediated top–down control by small grazers may be regulated by climate and/or grazer identity that co‐vary with latitude.  相似文献   

10.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

11.
A major challenge in ecology is to understand broadscale trends in the impact of environmental change. We provide the first integrative analysis of the effects of eutrophication on plants, herbivores, and their interactions in coastal wetlands across latitudes. We show that fertilisation strongly increases herbivory in salt marshes, but not in mangroves, and that this effect increases with increasing latitude in salt marshes. We further show that stronger nutrient effects on plant nitrogen concentration at higher latitudes is the mechanism likely underlying this pattern. This biogeographic variation in nutrient effects on plant–herbivore interactions has consequences for vegetation, with those at higher latitudes being more vulnerable to consumer pressure fuelled by eutrophication. Our work provides a novel, mechanistic understanding of how eutrophication affects plant–herbivore systems predictably across broad latitudinal gradients, and highlights the power of incorporating biogeography into understanding large‐scale variability in the impacts of environmental change.  相似文献   

12.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

13.
We examined the linkage between climate and interspecific plant interactions in New England salt marshes. Because harsh edaphic conditions in marshes can be ameliorated by neighboring plants, plant neighbors can have net competitive or facilitative interactions, depending on ambient physical stresses. In particular, high soil salinities, which are largely controlled by solar radiation and the evaporation of marsh porewater, can be ameliorated by plant neighbors under stressful conditions leading to facilitative interactions. Under less stressful edaphic conditions, these same neighbors may be competitors. In this paper, we use this mechanistic understanding of marsh plant interactions to examine the hypothesis that latitudinal and inter-annual variation in climate can influence the nature and strength of marsh plant species interactions. We quantified the relationship between climate and species interactions by transplanting marsh plants into ambient vegetation and unvegetated bare patches at sites north and south of Cape Cod, a major biogeographic barrier on the east coast of North America. We hypothesized that the cooler climate north of Cape Cod would lead to fewer positive interactions among marsh plants. We found both latitudinal and inter-annual variation in the neighbor relations of marsh plants that paralleled latitudinal differences in temperature and salinity. South of Cape Cod, plant neighbor interactions tended to be more facilitative, whereas north of Cape Cod, plant neighbor interactions were more competitive. At all sites, soil salinity increased and plant neighbor interactions were more facilitative in warmer versus cooler years. Our results show that interspecific interactions can be strikingly linked to climate, but also reveal that because the sensitivity of specific species interactions to climatic variation is highly variable, predicting how entire communities will respond to climate change will be difficult, even in relatively simple, well-studied systems.  相似文献   

14.
The influence of biotic factors on the distribution and establishment of halophytes is being considered in this review. Physicochemical factors, such as salinity and flooding, often are considered to be the determining factors controlling the establishment and zonational patterns of species in salt marsh and salt desert environments. Sharp boundaries commonly are found between halophyte communities even though there is a gradual change in the physicochemical environment, which indicates that biotic interactions may play a significant role in deterining the distribution pattern of species and the composition of zonal communities. Competition is hypothesized to play a key role in determining both the upper and lower limits of species distribution along a salinity gradient. Field and laboratory experiments indicate that the upper limits of distribution of halophytes into less saline or nonsaline habitats is often determined by competition. There appears to be a reciprocal relationship between the level of salt tolerance of species and their ability to compete with glycophytes in less saline habitats. Halophytes are not competitive in nonsaline habitats, but their competitive ability increases sharply in saline habitats. Allelopathic effects have been reported in salt desert habitats, but have not been reported along salinity gradients in salt marshes. Some species of halophytes that are salt accumulators have the ability to change soil chemistry. Chemical inhibition of intolerant species occurs when high concentrations of sodium are concentrated in the surface soils of salt desert plant communities that are dominated by salt-accumulating species. Establishment of less salt-tolerant species is inhibited in the vicinity of these salt-accumulating species. Herbivory is reported to cause both an increase and a decrease in plant diversity in salt marsh habitats. Heavy grazing is reported to eliminate sensitive species and produce a dense cover of graminoids in high marsh coastal habitats. However, in other marshes, grazing produced bare patches that allowed annuals and other low marsh species to invade upper marsh zonal communities. A retrogression in plant succession may occur in salt marshes and salt deserts because of heavy grazing. Intermediate levels of grazing by sheep, cattle, and horses could produce communities with the highest species richness and heterogeneity. Grazing by geese produced bare areas that had soils with higher salinity and lower soil moisture than vegetated areas, allowing only the more salt-tolerant species to persist. Removal of geese from areas by use of inclosures caused an increase in species richness in subarctic salt marshes. Invertebrate herbivores could also inhibit the survival of seeds and the ability of plants to establish in marshes. Parasites could play a significant role in determining the species composition of zonal communities, because uninfected rarer species are able to establish in the gaps produced by the death of parasitized species.  相似文献   

15.
Salt marsh habitat loss to vegetation die‐offs has accelerated throughout the western Atlantic in the last four decades. Recent studies have suggested that eutrophication, pollution and/or disease may contribute to the loss of marsh habitat. In light of recent evidence that predators are important determinants of marsh health in New England, we performed a total predator exclusion experiment. Here, we provide the first experimental evidence that predator depletion can cause salt marsh die‐off by releasing the herbivorous crab Sesarma reticulatum from predator control. Excluding predators from a marsh ecosystem for a single growing season resulted in a >100% increase in herbivory and a >150% increase in unvegetated bare space compared to plots with predators. Our results confirm that marshes in this region face multiple, potentially synergistic threats.  相似文献   

16.
Abstract. Vegetation succession in three back‐barrier salt marshes in the Wadden Sea was studied using a data set comprising 25 years of vegetation development recorded at permanent quadrats. The effect of livestock grazing on succession was assessed by comparing quadrats where grazing was experimentally prevented or imposed. We studied changes at the species level as well as at the level of the plant community. Special attention is given to effects on plant species richness and community characteristics that are relevant for lagomorphs (hares and rabbits) and geese. Inundation frequency and grazing were most important in explaining the variation in species abundance data. The three marshes studied overlap in the occurrence of different plant communities and the observed patterns were consistent between them. Clear differences in frequency and abundance of plant species were observed related to grazing. Most plant species had a greater incidence in grazed treatments. Species richness increased with elevation, and was 1.5 to 2 × higher in the grazed salt marsh. Grazing negatively influenced Atriplex portulacoides and Elymus athericus, whereas Puccinellia maritima and Festuca rubra showed a positive response. The communities dominated by Elymus athericus, Artemisia maritima and Atriplex portulacoides were restricted to the ungrazed marsh. Communities dominated by Puccinellia maritima, Juncus gerardi and Festuca rubra predominantly occurred at grazed sites. As small vertebrate herbivores prefer these plants and communities for foraging, livestock grazing thus facilitates for them.  相似文献   

17.
Plants under herbivore attack often respond defensively by mounting chemical and physical defences. However, some herbivores can manipulate plant defences to their own benefit by suppressing the expression of induced defences. These herbivore‐induced changes specific to the attacking herbivore can either facilitate or impede the colonization and establishment of a second herbivore. Although recent studies have focused on the effect of multiple herbivory on plant induced response and the third trophic level, few have examined the ecological relevance of multiple herbivores sharing the host. Here, we investigated whether herbivory by the white mealybug Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) or the red spider mite Olygonychus ilicis (McGregor) (Acari: Tetranychidae), two herbivores that peak in coffee plantations during the dry season, may facilitate the colonization and establishment of the other species in coffee plants. Dual‐choice arena tests showed that white mealybugs preferred mite‐infested over uninfested coffee plants as hosts. Fifteen days after the release of 50 first‐instar P. minor nymphs, greater numbers of nymphs and adults were found on mite‐infested than uninfested plants, indicating superior performance on mite‐infested plants. On the other hand, female red spider mites did not show clear preference between uninfested and mealybug‐infested plants and deposited similar numbers of eggs on both treatments. In a no‐choice test, red spider mites performed poorly on mealybug‐infested plants with a smaller number of eggs, nymphs, females and males found in mealybug‐infested plants relative to uninfested plants. Thus, our results indicate that coffee plants are more likely to be infested by the red spider mite before white mealybug, rather than the inverse sequence (i.e. mealybug infestation followed by red spider mites). Our findings are discussed in the context of plant manipulation reported for pseudococcid mealybugs and spider mites.  相似文献   

18.
Plants in nature are attacked sequentially by herbivores, and theory predicts that herbivore-specific responses allow plants to tailor their defenses. We present a novel field test of this hypothesis, and find that specific responses of Solanum dulcamara lead to season-long consequences for two naturally colonizing herbivores, irrespective of the second herbivore to attack plants. This result indicates that responses induced by the initial herbivore made plants less responsive to subsequent attack. We show that initial herbivory by flea beetles and tortoise beetles induce distinct plant chemical responses. Initial herbivory by flea beetles lowered the occurrence of conspecifics and tortoise beetles relative to controls. Conversely, initial herbivory by tortoise beetles did not influence future herbivory. Remarkably, the experimentally imposed second herbivore to feed on plants did not modify consequences (induced resistance or lack thereof) of the first attacker. Induction of plant chemical responses was consistent with these ecological effects; i.e. the second herbivore did not modify the plant's initial induced response. Thus, canalization of the plant resistance phenotype may constrain defensive responses in a rapidly changing environment.  相似文献   

19.
Goranson CE  Ho CK  Pennings SC 《Oecologia》2004,140(4):591-600
Current theories of plant-herbivore interactions suggest that plants may differ in palatability to herbivores as a function of abiotic stress; however, studies of these theories have produced mixed results. We compared the palatability of eight common salt marsh plants that occur across elevational and salinity stress gradients to six common leaf-chewing herbivores to determine patterns of plant palatability. The palatability of every plant species varied across gradients of abiotic stress in at least one comparison, and over half of the comparisons indicated significant differences in palatability. The direction of the preferences, however, was dependent on the plant and herbivore species studied, suggesting that different types of stress affect plants in different ways, that different plant species respond differently to stress, and that different herbivore species measure plant quality in different ways. Overall, 51% of the variation in the strength of the feeding preferences could be explained by a knowledge of the strength of the stress gradient and the type of gradient, plant and herbivore studied. This suggests that the prospects are good for a more complex, conditional theory of plant stress and herbivore feeding preferences that is based on a mechanistic understanding of plant physiology and the factors underlying herbivore feeding preferences.  相似文献   

20.
Ewanchuk PJ  Bertness MD 《Oecologia》2003,136(4):616-626
High latitude salt marsh plant communities are frequently exposed to conspicuous winter ice disturbances, which trigger secondary succession. In this paper, we document the recovery of a northern New England salt marsh from a severe winter icing event in 1998. Ice disturbances that killed plants but that left the underlying peat intact recovered rapidly. However, ice damage that killed plants and removed the underlying peat, led to areas of physiologically harsh edaphic conditions, specifically waterlogged and anoxic soils that limited plant recolonization. A transplant experiment revealed that only the most stress-tolerant plants were capable of invading the most stressful portions of ice disturbances. A second experiment that artificially dried disturbance patches accelerated patch recovery. These data suggest that recovery from intense ice disturbance is dependent on stress-tolerant plants invading edaphically harsh disturbances, eventually facilitating the recolonization of the community. This process likely takes longer than a decade for full recovery to occur in the areas where both plants and the peat base are removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号