首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe the complete nucleotide sequence of the mitochondrial genome (16 583/4 bp) of the zebra finch (Taeniopygia guttata). Primers were designed based on highly conserved regions of an alignment of three passerine complete mitochondrial DNA (mtDNA) sequences. A combination of overlapping long polymerase chain reaction (PCR) purification, followed by fully nested PCR and sequencing was used to determine the complete mtDNA genome. Six birds, from distinct maternal lineages of a pedigreed population were sequenced. Five novel haplotypes were identified. These sequences provide the first data for sequence variation across the whole mitochondrial genome of a passerine bird species.  相似文献   

2.
A procedure is described for the accurate determination of the maintenance nitrogen requirement (MNR) of small granivorous birds. When used with the zebra finch (Taeniopygia guttata), it yielded a MNR of 403 mg kgW(-0.75) d(-1). This is lower than most other passerines so far measured and more similar to some nonpasserine species. Similarly, the value for endogenous nitrogen loss estimated for the zebra finch (153 mg kgW(-0.75) d(-1)) is less than that for passerines in general but higher than the nonpasserine value. We suggest that the low MNR of the strictly granivorous zebra finch is primarily an adaptation to seed diets in which high-quality protein is a limiting factor. Comparison with a wider range of species reported in the literature was restricted because inappropriate methods have been used to estimate MNR in many cases, including the use of growing or reproducing birds and the assumption that maintenance of body mass necessarily coincides with maintenance of zero nitrogen balance.  相似文献   

3.
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.  相似文献   

4.
Parents are selected to preferentially invest in the offspring with highest reproductive value. One mechanism for achieving this is the modification of competitive asymmetries between siblings by maternal hormones. In many organisms, offspring value varies according to birth position in the brood, which determines survival chances and competitive advantage over access to resources. In birds, variation in yolk androgen allocation over the laying sequence is thought to modulate dominance of senior chicks over junior brood mates. We tested this hypothesis in zebra finches, which show a naturally decreasing pattern of within-clutch testosterone allocation. We abolished these within-clutch differences by experimentally elevating yolk testosterone levels in eggs 2-6 to the level of egg 1, and we assessed fitness measures for junior offspring (eggs 2-6), senior offspring (egg 1), and their mothers. Testosterone-injected eggs hatched later than control eggs. Junior, but not senior, chicks in testosterone-treated broods attained poorer phenotypic quality compared to control broods, which was not compensated for by positive effects on seniors. Mothers were generally unaffected by clutch treatment. Thus, naturally decreasing within-clutch yolk testosterone allocation appears to benefit all family members and does not generally enhance brood reduction by favoring senior chicks, in contrast to the widely held assumption.  相似文献   

5.
Mitochondrial DNA (mtDNA) variation has been suggested as a possible cause of variation in male fertility because sperm activity is tightly coupled to mitochondrial oxidative phosphorylation and ATP production, both of which are sensitive to mtDNA mutations. Since male‐specific phenotypes such as sperm have no fitness consequences for mitochondria due to maternal mitochondrial (and mtDNA) inheritance, mtDNA mutations that are deleterious in males but which have negligible or no fitness effect in females can persist in populations. How often such mutations arise and persist is virtually unknown. To test whether there were associations between mtDNA variation and sperm performance, we haplotyped 250 zebra finches Taeniopygia guttata from a large pedigreed‐population and measured sperm velocity using computer‐assisted sperm analysis. Using quantitative genetic ‘animal’ models, we found no effect of mtDNA haplotype on sperm velocity. Therefore, there is no evidence that in this system mitochondrial mutations have asymmetric fitness effects on males and females, leading to genetic variation in male fertility that is blind to natural selection.  相似文献   

6.
As is the case for human speech, birdsong is transmitted across generations by imitative learning. Although transfer of song patterns from adults to juveniles typically occurs via vertical or oblique transmission, there is also evidence of horizontal transmission between juveniles of the same generation. Here, we show that a young male zebra finch (Taeniopygia guttata) that has been exposed to its father during the sensitive period for song learning can lead a brother, that has never heard the paternal song, to imitate some sounds of the father. Moreover, song similarity between the two brothers was higher than the similarity measured between the paternal song and the song of the brother that had a week-long exposure to the father. We speculate that the phenomenon of within-generation song learning among juveniles may be more widespread than previously thought and that when a juvenile evaluates potential models for imitative learning, a sibling may be as salient as an adult.  相似文献   

7.
To study the population genetics as well as the mating system of captive zebra finch (Taeniopygia guttata) populations, we developed primers for 12 microsatellite loci and screened them in 529 individuals from two successive generations of a single captive population. All markers were polymorphic with five to 14 alleles per locus. We checked all markers for Mendelian inheritance in 307 offspring whose parents were known for sure. Four markers showed evidence for the presence of null alleles. Once allowing for null alleles, we found no mismatches between offspring and parents, suggesting a very low rate of mutation. Average observed and expected heterozygosities across the eight loci showing no evidence for null‐alleles was 0.819 and 0.812, respectively.  相似文献   

8.
Individuals can compensate for poor early nutrition by accelerating their growth rates once diet improves, but if malnutrition occurs at a key stage of development only certain body structures may compensate fully. This degrees of compensation is predicted to differ between the sexes and also between species with different life history strategies. In this paper we determine how males and females in a short-lived bird species, with only slight size dimorphism, differ in their abilities to compensate for a poor start in life. Here, zebra finch Taeniopygia guttata chicks from 93 broods were reared on either a standard quality (SQ), or low quality (LQ) diet for the first 15 d of life, followed by a standard diet for the rest of their lives. Thus, the period of nutritional manipulation was relatively short compared with previous studies. Nestlings on a LQ diet showed slower body mass and tarsus growth rates than those on SQ diet but this was reversed after the diet of the LQ birds was improved. LQ birds of both sexes were able to fully compensate in terms of body mass and beak colour, but not tarsus length. Body size and beak colour are sexually selected traits in male zebra finches. By adulthood LQ females had significantly shorter wings than other birds, apparently directing resources into sex-specific structures instead of feather and skeletal growth. Thus, our experiment showed that the sexes differed in how they phenotypically compensated for a poor start in life. Males in particular invested sparse resources into structures associated with mate acquisition, as proposed by life history theory for a species that 'lives fast and dies young.' We predict that this relatively short period of malnutrition during early development will have long term, sex-specific, fitness consequences for these birds.  相似文献   

9.
Passerine birds have an extensive repertoire of olfactory receptor genes. However, the circumstances in which passerine birds use olfactory signals are poorly understood. The aim of this study is to investigate whether olfactory cues play a role in natal nest recognition in fledged juvenile passerines. The natal nest provides fledglings with a safe place for sleeping and parental food provisioning. There is a particular demand in colony-breeding birds for fledglings to be able to identify their nests because many pairs breed close to each other. Olfactory orientation might thus be of special importance for the fledglings, because they do not have a visual representation of the nest site and its position in the colony when leaving the nest for the first time. We investigated the role of olfaction in nest recognition in zebra finches, which breed in dense colonies of up to 50 pairs. We performed odour preference tests, in which we offered zebra finch fledglings their own natal nest odour versus foreign nest odour. Zebra finch fledglings significantly preferred their own natal nest odour, indicating that fledglings of a colony breeding songbird may use olfactory cues for nest recognition.  相似文献   

10.
Upregulation of aromatase (estrogen synthase) in glia around the site of neural injury may limit neural degeneration. Systemic administration of estrogen limits neural damage, but the specific role of local estrogen provision in this effect is unclear. In male zebra finches, we tested the effect of local aromatase inhibition and estrogen replacement on type of cellular degeneration and the distance of this degeneration from the source of insult. Subjects received injections of the aromatase inhibitor fadrozole into one telencephalic lobe and fadrozole and estradiol into the contralateral lobe. Seventy-two hours later, we used Fluoro-Jade B and TUNEL to label dying and apoptotic cells, respectively. Since each subject was its own control, we were able to assess the influence of local estrogen replacement in relative distinction from circulating steroids and constitutive aromatization. Cellular degeneration around the lesion was measured with Fluoro-Jade B, TUNEL, and indirectly with aromatase expression. Additionally, the glial nature of aromatase-positive cells around the injury was queried by co-localization with vimentin. The estrogen replaced injury had fewer apoptotic cells clustered more closely around the injury compared to the hemisphere injected with fadrozole alone. Since Fluoro-Jade B and TUNEL labeled similar numbers of cells, and the distance of these cells from the injection was identical, we suggest that estrogen replacement functions primarily to restrict apoptosis in the current paradigm. Lastly, aromatase-positive cells around injuries co-localize vimentin, establishing their glial nature. Thus, glial estrogen provision at sites of neural insult may be critical in limiting the cellular degeneration caused by injury via an inhibition of apoptosis.  相似文献   

11.
The ability of mothers to modify offspring phenotype to match prevailing environmental conditions is an important component of reproductive success, especially in variable environments. Pre-breeding conditions, such as food abundance, may have significant consequences for both the number and quality of offspring a female produces as well as her ability to rear the offspring. In an experiment where pre-breeding diet was manipulated, we investigated if allocation of yolk androgens (testosterone and 5α-dihydrotestosterone) was related to the quality of diet experienced prior to breeding. Female zebra finches Taeniopygia guttata produced larger clutches on high quality diet than on low quality diet but with no differences in egg mass. Yolk androgen levels were repeatable within subsequent clutches of the same female and females did not change mean androgen content in eggs in relation to diet quality. However, within-in clutch pattern of yolk testosterone and DHT changed with diet treatment. Testosterone and DHT decreased with laying order on the low quality diet but remained constant on the high quality diet. Differential yolk androgen allocation within the clutch may alter the competitive differences between chicks and provide females the possibility to adjust reproductive investment and offspring phenotype already at the egg stage.  相似文献   

12.
13.
The Australian zebra finch, Taeniopygia guttata, is a widely used model organism, yet few studies have compared domesticated and wild birds with the aim of examining its relevance as an evolutionary model species. Domestic and wild broods hatch over approximately 4 and 2 days, respectively, which is important given that nestlings can fledge after as little as 12 days, although 16–18 days is common. We aimed to evaluate the extent to which the greater hatching asynchrony in domestic stock may effect reproductive success through greater variance in size hierarchies, variance in within‐brood growth rates, and partial brood mortality. Therefore, by simultaneously controlling brood sizes and experimentally manipulating hatching intervals in both domesticated and wild birds, we investigated the consequences of hatching intervals for fledging success and nestling growth patterns, as well as trade‐offs. Fledging success was similarly high in domestic and wild broods of either hatching pattern. Nonetheless, between‐brood analyses revealed that domestic nestlings had significantly higher masses, larger skeletal characters, and longer wings than their wild counterparts, although wild nestlings had comparable wing lengths at the pre‐fledging stage. Moreover, within‐brood analyses revealed only negligible differences between domestic and wild nestlings, and larger effects of hatching order and hatching pattern. Therefore, despite significant differences in the hatching intervals, and the ultimate size achieved by nestlings, the domestication process does not appear to have significantly altered nestling growth trade‐offs. The present study provides reassuring evidence that studies involving domesticated zebra finches, or other domesticated model organisms, may provide reasonable adaptive explanations in behavioural and evolutionary ecology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 763–773.  相似文献   

14.
Early developmental conditions can significantly influence the growth and survival of many animal species. We studied the consequences of exposure to corticosterone (CORT), a stress hormone, during the nestling stage on two behavioral traits (neophobia, social dominance) measured when the birds had reached independence. Nestling zebra finches (Taeniopygia guttata) were exposed twice daily to exogenous CORT via oral administration for a 12-day period up until fledging. Experimental CORT administration depressed nestling growth rates, confirming results previously obtained in this species. Our data on neophobic behavior revealed a significant interaction between sex and treatment, with CORT-dosed males showing reduced latencies to approach a novel object, while there was little effect of corticosterone treatment on female neophobia. There was no significant effect of age (30 or 50 days), however, there was a non-significant trend towards an interaction between treatment and age, with neophobia increasing with age in the CORT-dosed birds, but decreasing in controls. At 50 days of age previous exposure to corticosterone resulted in reduced success in competitions for a non-food-based resource (a perch) in both sexes. There were no effects of brood size on any behavioral traits measured here, but this may be due to the small range in brood size used. Our results show that elevated levels of stress hormones during postnatal development can have significant effects on important behavioral traits, i.e., neophobia and dominance. Moreover, they confirm the importance of rearing conditions in shaping adult phenotypes.  相似文献   

15.
In a wide range of bird species, females have been shown to express active preferences for males that sing more complex songs. Current sexual selection theory predicts that for this signal to remain an honest indicator of male quality, it must be associated with an underlying cost of development or maintenance. There has been considerable debate questioning the costs associated with song production and learning. Recently, the nutritional stress hypothesis proposed that song complexity could act as an indicator of early developmental history, since the song control nuclei in the brain are laid down early in life. Here we test the nutritional stress hypothesis, by investigating the effects of dietary stress on the quality of adult song produced. In addition, we tested the effects of elevated corticosterone during development on song production to test its possible involvement in mediating the effects of developmental stress. The results demonstrate that both dietary restriction and elevated corticosterone levels significantly reduced nestling growth rates. In addition, we found that experimentally stressed birds developed songs with significantly shorter song motif duration and reduced complexity. These results provide novel experimental evidence that complex song repertoires may have evolved as honest signals of male quality, by indicating early developmental rearing conditions.  相似文献   

16.
Stapley J  Birkhead TR  Burke T  Slate J 《Genetics》2008,179(1):651-667
Passeriformes are the largest order of birds and one of the most widely studied groups in evolutionary biology and ecology. Until recently genomic tools in passerines relied on chicken genomic resources. Here we report the construction and analysis of a whole-genome linkage map for the zebra finch (Taeniopygia guttata) using a 354-bird pedigree. The map contains 876 SNPs dispersed across 45 linkage groups and we found only a few instances of interchromosomal rearrangement between the zebra finch and the chicken genomes. Interestingly, there was a greater than expected degree of intrachromosomal rearrangements compared to the chicken, suggesting that gene order is not conserved within avian chromosomes. At 1068 cM the map is approximately only one quarter the length of the chicken linkage map, providing further evidence that the chicken has an unusually high recombination rate. Male and female linkage-map lengths were similar, suggesting no heterochiasmy in the zebra finch. This whole-genome map is the first for any passerine and a valuable tool for the zebra finch genome sequence project and for studies of quantitative trait loci.  相似文献   

17.
18.
Responses of neurons of the optic tectum, the prominent, highly laminated mesencephalic station of the tectofugal visual pathway in birds, to computer-generated and other visual stimuli were examined in zebra finches. Our study shows that the contralateral retina projects to the tectum in topographic order. The representation of the visual field is tilted against the horizon by 22°. The representation of the contralateral hemifield extends to the ipsilateral side by 15°. Most neurons have receptive fields with excitatory centres of different shapes and inhibitory surround. A new type of neuronal receptive field is described which has an excitatory centre and a surround which is movement sensitive and preferably excited by very small spots. The first type of neurons is mostly located in upper tectal layers, the latter only in deeper layers. Excitatory centre sizes increase with depth, and there is a tendency of smaller receptive fields in the foveal region. The representation of the frontal visual field does not show specializations which could be expected if it were used for fixation of grain during pecking. Our results are in accordance with previous behavioural experiments. Accepted: 30 April 1999  相似文献   

19.
The zebra finch (Taeniopygia guttata) is a small Australian grassland songbird that has been domesticated over the past two centuries. Because it is easy to breed in captivity, it has become a widely used study organism, especially in behavioural research. Most work has been conducted on domesticated populations maintained at numerous laboratories in Europe and North America. However, little is known about the extent to which, during the process of domestication, captive populations have gone through bottlenecks in population size, leading to inbred and potentially genetically differentiated study populations. This is an important issue, because (i) behavioural studies on captive populations might suffer from artefacts arising from high levels of inbreeding or lack of genetic variation in such populations, and (ii) it may hamper the comparability of research findings. To address this issue, we genotyped 1000 zebra finches from 18 captive and two wild populations at 10 highly variable microsatellite loci. We found that all captive populations have lost some of the genetic variability present in the wild, but there is no evidence that they have gone through a severe bottleneck, as the average captive population still showed a mean of 11.7 alleles per locus, compared to a mean of 19.3 alleles/locus for wild zebra finches. We found significant differentiation between the captive populations (F(ST) = 0.062). Patterns of genetic similarity closely match geographical relationships, so the most pronounced differences occur between the three continents: Australia, North America, and Europe. By providing a tree of the genetic similarity of the different captive populations, we hope to contribute to a better understanding of variation in research findings obtained by different laboratories.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号