首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allison K. Shaw  Simon A. Levin 《Oikos》2011,120(12):1871-1879
Migration is used by a number of species as a strategy for dealing with a seasonally variable environment. In many migratory species, only some individuals migrate within a given season (migrants) while the rest remain in the same location (residents), a phenomenon called ‘partial migration’. Most examples of partial migration considered in the literature (both empirically and theoretically) fall into one of two categories: either species where residents and migrants share a breeding ground and winter apart, or species where residents and migrants share an overwintering ground and breed apart. However, a third form of partial migration can occur when non‐migrating individuals actually forgo reproduction, essentially a special form of low‐frequency reproduction. While this type of partial migration is well documented in many taxa, it is not often included in the partial migration literature, and has not been considered theoretically to date. In this paper we present a model for this partial migration scenario and determine under what conditions an individual should skip a breeding opportunity (resulting in partial migration), and under what conditions individuals should breed every chance they get (resulting in complete migration). In a constant environment, we find that partial migration is expected to occur when the mortality cost of migration is high, and when individuals can greatly increase their fecundity by skipping a year before breeding. In a stochastic environment, we find that an individual should skip migration more frequently with increased risk of a bad year (higher probability and severity), with higher mortality cost of migration, and with lower mortality cost of skipping. We discuss these results in the context of empirical data and existing life history theory.  相似文献   

2.
ROLAND SANDBERG 《Ibis》1996,138(3):514-524
Mist-net capture data taken during 6 years (1988–1990 and 1992–1994) of field work were used to describe the arrival sequences and fat loads of nine species of migratory passerines which breed in a near-Arctic environment in Swedish Lapland. Long-distance migrants arrived with significantly larger mean fat reserves than did medium- and short-distance migrants. Long-distance migrants carried fat loads at arrival which corresponded to potential remaining flight distances between 242 and 500 km. When females and males arrived on the breeding grounds simultaneously, females carried significantly larger energy reserves than did males in seven out of nine species. In contrast, when the sexes showed a significant difference in median arrival date (two out of nine species), there was no difference in mean fat load carried into the breeding area. A relationship was found between the migratory habits and foraging ecology of each species and the amount of fat reserves at arrival, suggesting that species-specific migratory distances and feeding habits determine the amount of fat that is needed during the transition period between migration and onset of breeding. The short growing season in the study area restricts the time available for breeding and moult, and large energy reserves at arrival may speed up the breeding schedule to counteract possible time constraints. Overloading at the last stopover site during spring migration may be an adaptation allowing birds to cope with a restricted time frame for breeding and moult at high latitudes.  相似文献   

3.
Adult passerines renew their flight feathers at least once every year. This complete moult occurs either in the breeding areas, just after breeding (summer moult), or, in some long-distance migratory species, at the non-breeding areas, after arrival to the southern wintering area at the end of autumn migration (winter moult). The aim of this study was to relate moult strategies with the DMD, the difference in median migration date, through Israel, between juveniles and adults. Our data on autumn migration timing in juveniles and adults was based on ringing data of 49,125 individuals belonging to 23 passerine species that breed in Europe and Western Asia and migrate through Israel. We found that DMD was associated with moult timing. In all species that perform a winter moult, adults preceded juveniles during autumn. Among migrants who perform a summer moult, we found evidence of both migration timing patterns: juveniles preceding adults or adults preceding juveniles. In addition, in summer moulters, we found a significant, positive correlation between mean breeding latitude and DMD. Although previous studies described that moult duration and extent can be affected by migration, we suggest that moult strategies affect both migration timing and migration strategy. These two moult strategies (summer or winter moult) also represent two unique migration strategies. Our findings highlight the evolutionary interplay between moult and migration strategies.  相似文献   

4.
Climate change has proven to affect various aspects of the migration of birds. In response to milder winters making the habitat more profitable and increasing the survival of residents, the migratory fraction of partially migratory populations has been predicted to decline. We studied the blue tit Parus caeruleus , a common partial migrant in southern Sweden. The numbers migrating at Falsterbo, a migratory passage site in SW Sweden, has increased during the last decades, in parallel with increasing winter and annual temperatures. Migration data from Falsterbo were compared with yearly indices of the size of the breeding population as estimated by the Swedish National Bird Monitoring Programme. Over the study period 1975–2004, also the breeding population has increased in size. The proportion of blue tits migrating each year did not change over the study period, or possibly even increased slightly, which is in contrast to how climate change has been predicted to influence populations containing both migratory and resident individuals. The most important factors determining the intensity of blue tit migration in a given year was the size of an important winter food source, the beech mast crop (more migrants at lower crops) and the size of the breeding population (more migrants at higher densities).  相似文献   

5.
Climate change has advanced the phenology of many organisms. Migratory animals face particular problems because climate change in the breeding and the wintering range may be asynchronous, preventing rapid response to changing conditions. Advancement in timing of spring migration may have carry-over effects to other parts of the annual cycle, simply because advancement of one event in the annual cycle also advances subsequent events, gradually causing a general shift in the timing of the entire annual cycle. Such a phenotypic shift could generate accumulating effects over the years for individuals, but also across generations. Here we test this novel hypothesis of phenotypic response to climate change by using long-term data on the Arctic tern Sterna paradisaea. Mean breeding date advanced by almost three weeks during the last 70 years. Annual arrival date at the breeding grounds during a period of 47 years was predicted by environmental conditions in the winter quarters in the Southern Ocean near the Antarctic and by mean breeding date the previous year. Annual mean breeding date was only marginally determined by timing of arrival the current year, but to a larger extent by arrival date and breeding date the previous year. Learning affected arrival date as shown by a positive correlation between arrival date in year (i+1) relative to breeding date in year (i) and the selective advantage of early breeding in year (i). This provides a mechanism for changes in arrival date being adjusted to changing environmental conditions. This study suggests that adaptation to changing climatic conditions can be achieved through learning from year to year[Current Zoology 55(2):92-101,2009].  相似文献   

6.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

7.
Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within‐population variability in migratory movements and destinations, here termed ‘migratory diversity’, might be more resilient to environmental change. To test this, we related map‐based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non‐breeding ranges relative to breeding, a characteristic we term ‘migratory dispersion’, were less likely to be declining than those with more restricted non‐breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non‐breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe‐wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.  相似文献   

8.
Partial migration occurs when only some animals in a population migrate. While evidence suggests that migratory strategies are partially controlled by genes, individual and environmental conditions which alter the cost‐benefit trade‐off of migration among individuals are also likely to play a role. Three hypotheses have been advanced to explain condition‐dependent partial migration: the arrival time, dominance and body size hypotheses. In this study, we asked whether these hypotheses explained differences in migratory strategy among individuals in a partially migratory population of western bluebirds Sialia mexicana breeding in southern British Columbia, Canada. We used stable hydrogen isotope signatures in claw tissue to determine migratory strategy of individual bluebirds, and examined patterns of migration at both individual and population levels. The proportion of resident bluebirds varied significantly over the three years of the study, and across study sites. Several migrants switched to the resident strategy between years; however, we found no evidence of strategy switching in the opposite direction. Young birds were significantly more likely to be resident than older birds, a pattern which could arise if early arrival is particularly important for birds obtaining a territory for the first time. Furthermore, young females were the most likely of all sex–age classes to be resident, which may reflect a survival advantage of residency for young females. Finally, birds mated assortatively by migratory strategy and isotopic evidence suggests that members of a pair often wintered in the same place. Our results provided no support for the dominance or body size hypotheses, and only limited support for the arrival time hypothesis in bluebirds. However, taken together, we suggest that our findings indicate that social factors may influence migratory strategies in this system.  相似文献   

9.
Studies of partial migrants provide an opportunity to assess the cost and benefits of migration. Previous work has demonstrated that sedentary American dippers (residents) have higher annual productivity than altitudinal migrants that move to higher elevations to breed. Here we use a ten-year (30 period) mark-recapture dataset to evaluate whether migrants offset their lower productivity with higher survival during the migration-breeding period when they occupy different habitat, or early and late-winter periods when they coexist with residents. Mark-recapture models provide no evidence that apparent monthly survival of migrants is higher than that of residents at any time of the year. The best-supported model suggests that monthly survival is higher in the migration-breeding period than winter periods. Another well-supported model suggested that residency conferred a survival benefit, and annual apparent survival (calculated from model weighted monthly apparent survival estimates using the Delta method) of residents (0.511 ± 0.038SE) was slightly higher than that of migrants (0.487 ± 0.032). Winter survival of American dippers was influenced by environmental conditions; monthly apparent survival increased as maximum daily flow rates increased and declined as winter temperatures became colder. However, we found no evidence that environmental conditions altered differences in winter survival of residents and migrants. Since migratory American dippers have lower productivity and slightly lower survival than residents our data suggests that partial migration is likely an outcome of competition for limited nest sites at low elevations, with less competitive individuals being forced to migrate to higher elevations in order to breed.  相似文献   

10.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

11.
The onset of migration in birds is assumed to be primarily under endogenous control in long-distance migrants. Recently, climate changes appear to have been driving a rapid change in breeding area arrival. However, little is known about the climatic factors affecting migratory birds during the migration cycle, or whether recently reported phenological changes are caused by plastic behavioural responses or evolutionary change. Here, we investigate how environmental conditions in the wintering areas as well as en route towards breeding areas affect timing of migration. Using data from 1984 to 2004 covering the entire migration period every year from observatories located in the Middle East and northern Europe, we show that passage of the Sahara Desert is delayed and correlated with improved conditions in the wintering areas. By contrast, migrants travel more rapidly through Europe, and adjust their breeding area arrival time in response to improved environmental conditions en route. Previous studies have reported opposing results from a different migration route through the Mediterranean region (Italy). We argue that the simplest explanation for different phenological patterns at different latitudes and between migratory routes appears to be phenotypic responses to spatial variability in conditions en route.  相似文献   

12.
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier.  相似文献   

13.
Aims Different aspects of soaring‐bird migration are influenced by weather. However, the relationship between weather and the onset of soaring‐bird migration, particularly in autumn, is not clear. Although long‐term migration counts are often unavailable near the breeding areas of many soaring birds in the western Palaearctic, soaring‐bird migration has been systematically monitored in Israel, a region where populations from large geographical areas converge. This study tests several fundamental hypotheses regarding the onset of migration and explores the connection between weather, migration onset and arrival at a distant site. Location Globally gridded meteorological data from the breeding areas in north‐eastern Europe were used as predictive variables in relation to the arrival of soaring migrants in Israel. Methods Inverse modelling was used to study the temporal and spatial influence of weather on initiation of migration based on autumn soaring‐bird migration counts in Israel. Numerous combinations of migration duration and temporal influence of meteorological variables (temperature, sea‐level pressure and precipitable water) were tested with different models for meteorological sensitivity. Results The day of arrival in Israel of white storks, honey buzzards, Levant sparrowhawks and lesser spotted eagles was significantly and strongly related to meteorological conditions in the breeding area days or even weeks before arrival in Israel. The cumulative number of days or cumulative value above or below a meteorological threshold performed significantly better than other models tested. Models provided reliable estimates of migration duration for each species. Main conclusions The meteorological triggers of migration at the breeding grounds differed between species and were related to deteriorating living conditions and deteriorating migratory flight conditions. Soaring birds are sensitive to meteorological triggers at the same period every year and their temporal response to weather appears to be constrained by their annual routine.  相似文献   

14.
Progression of the vernal migratory life history stage to breeding presents a number of apparent behavioral and physiological conflicts. Features that characterize the migratory stage include: high mobility, sociality, repetitive cycles of feeding (hyperphagia and fattening) and migratory flight. Breeding comprises: sedentary, territorial and reproductive behaviors, an initial decline in hyperphagia and reduction of fuel stores. Because morphology, physiology and behavior change, the transition between stages cannot be instantaneous. In many species development of the reproductive system actually occurs during migration, but in others gonadal development may not commence until later. This variation in degree of overlap of migration and reproductive functions is not well understood, but may be related to migratory distance and length of the breeding season, which tends to be shorter at higher latitudes and altitudes. In these habitats, migrants may arrive at their breeding sites to find unpredictable conditions that cannot support breeding. At this juncture, migrants may retreat to refugia and prolong maintenance of facultative migratory functions, termed arrival biology, until conditions improve sufficiently to initiate breeding. In this review, we focus on the Pacific races of the white-crowned sparrow, Zonototrichia leucophyrs, in which the entire spectrum of migratory strategies are represented from resident to long distance migrants and about which much is known. This species presents a unique view of the appearance and variations in arrival biology. Focusing on the juncture between migration and breeding, we discuss the diversity of responses of congeners to a spectrum of environmental conditions that favor survival and reproductive success.  相似文献   

15.
The life cycles of plants and animals are changing around the world in line with the predictions originated from hypotheses concerning the impact of global warming and climate change on biological systems. Commonly, the search for ecological mechanisms behind the observed changes in bird phenology has focused on the analysis of climatic patterns from the species breeding grounds. However, the ecology of bird migration suggests that the spring arrival of long‐distance migrants (such as trans‐Saharan birds) is more likely to be influenced by climate conditions in wintering areas given their direct impact on the onset of migration and its progression. We tested this hypothesis by analysing the first arrival dates (FADs) of six trans‐Saharan migrants (cuckoo Cuculus canorus, swift Apus apus, hoopoe Upupa epops, swallow Hirundo rustica, house martin Delichon urbica and nightingale Luscinia megarhynchos), in a western Mediterranean area since from 1952 to 2003. By means of multiple regression analyses, FADs were analysed in relation to the monthly temperature and precipitation patterns of five African climatic regions south of the Sahara where species are thought to overwinter and from the European site from where FADs were collected. We obtained significant models for five species explaining 9–41% of the variation in FADs. The interpretation of the models suggests that: (1) The climate in wintering quarters, especially the precipitation, has a stronger influence on FADs than that in the species' potential European breeding grounds. (2) The accumulative effects of climate patterns prior to migration onset may be of considerable importance since those climate variables that served to summarize climate patterns 12 months prior to the onset of migration were selected by final models. (3) Temperature and precipitation in African regions are likely to affect departure decision in the species studied through their indirect effects on food availability and the build‐up of reserves for migration. Our results concerning the factors that affect the arrival times of trans‐Saharan migrants indicate that the effects of climate change are more complex than previously suggested, and that these effects might have an interacting impact on species ecology, for example by reversing ecological pressures during species' life cycles.  相似文献   

16.
The temporal and spatial organization of the annual cycle according to local conditions is of crucial importance for individuals’ fitness. Moreover, which sites and when particular sites are used can have profound consequences especially for migratory animals, because the two factors shape interactions within and between populations, as well as between animal and the environment. Here, we compare spatial and temporal patterns of two latitudinally separated breeding populations of a trans‐Equatorial passerine migrant, the collared flycatcher Ficedula albicollis, throughout the annual cycle. We found that migration routes and non‐breeding residency areas of the two populations largely overlapped. Due to climatic constraints, however, the onset of breeding in the northern population was approximately two weeks later than that of the southern population. We demonstrate that this temporal offset between the populations carries‐over from breeding to the entire annual cycle. The northern population was consistently later in timing of all subsequent annual events – autumn migration, non‐breeding residence period, spring migration and the following breeding. Such year‐round spatiotemporal patterns suggest that annual schedules are endogenously controlled with breeding latitude as the decisive element pre‐determining the timing of annual events in our study populations.  相似文献   

17.
Individual variation in timing of breeding is a key factor affecting adaptation to environmental change, yet our basic understanding of the causes of such individual variation is incomplete. This study tests several hypotheses for age-related variation in the breeding timing of Lesser Black-backed Gulls, based on a 13 year longitudinal data set that allows to decouple effects of age, previous prospecting behavior, and years of breeding experience on arrival timing at the colony. At the population level, age of first breeding was significantly associated with timing of arrival and survival, i.e. individuals tended to arrive later if they postponed their recruitment, and individuals recruiting at the age of 4 years survived best. However, up to 81% of the temporal variation in arrival dates was explained by within-individual effects. When excluding the pre-recruitment period, the effect of increasing age on advanced arrival was estimated at 11 days, with prior breeding experience accounting for a 7 days advance and postponed breeding for a 4 days delay. Overall, results of this study show that delayed age of first breeding can serve to advance arrival date (days after December 1st) in successive breeding seasons throughout an individual’s lifetime, in large part due to the benefits of learning or experience gained during prospecting. However, prospecting and the associated delay in breeding also bear a survival cost, possibly because prospectors have been forced to delay through competition with breeders. More generally, results of this study set the stage for exploring integrated temporal shifts in phenology, resource allocation and reproductive strategies during individual lifecycles of long-lived migratory species.  相似文献   

18.
We sought to determine whether early arrival was a determinant of contest outcome in loosely organized, non‐breeding flocks of birds. In White‐throated Sparrows (Zonotrichia albicollis) arrival date during autumn migration, i.e. within‐year prior residence, was a significant determinant of contest outcome for those birds that were not present on the study site in previous years. To determine whether the advantage of early arrival was due to prior residence per se, as opposed to some correlate of arrival date (e.g. condition), we experimentally delayed the arrival of 60 migrants. We found a significant effect of the delay: the outcome of contests between naturally arriving (control) birds and experimentally delayed birds was significantly related to the difference between the control bird's natural arrival date and the experimental bird's delayed arrival date. Thus, prior residence per se, and not some correlate of arrival date, had a significant effect on a naïve individual's ability to win contests. Interestingly, arrival date had no effect on contest outcome among birds that had wintered on the site in previous years. Because a prior residence advantage accumulates in a time‐dependent manner, our results suggest that fighting ability or perceived resource value increases with site familiarity. Thus, there may be selection on arrival date and site‐faithfulness as behavioral strategies to increase access to resources.  相似文献   

19.
Current climate change has been found to advance spring arrival and breeding dates of birds, but the effects on autumn migration and possible responses in the distribution of wintering individuals are poorly known. To thoroughly understand the consequences of climate change for animal life histories and populations, exploration of whole annual cycles are needed. We studied timing of migration (years 1979–2007), breeding phenology (1979–2007) and breeding success (1973–2007) of Eurasian sparrowhawks Accipiter nisus in Finland. We also investigated whether the migration distance of Finnish sparrowhawks has changed since the 1960s, using ringing recovery records. Since the late 1970s Finnish sparrowhawks have advanced their spring arrival, breeding and autumn departure considerably, but the migration distance has not changed. Early migrants, who are the ones with the highest reproductive success, show the strongest advance in the timing of spring migration. In autumn, advanced departure concerns young sparrowhawks. Late autumn migrants, who are mainly adults, have not advanced their migration significantly. The sparrowhawk is the most common bird of prey and the main predator of most passerines in Finland. Therefore, changes in sparrowhawk migration phenology may affect the migration behaviour of many prey species. The breeding success of sparrowhawks has increased significantly over the study period. This is however more likely caused by other factors than climate change, such as reduced exposure to organochlorine pollutants.  相似文献   

20.
Populations of animals with resident and migratory individuals provide an ideal system for addressing questions concerning the evolution of migration. Partially migratory populations may persist because residents and migrants have equal fitness or because migration is based on conditional asymmetries. Studies measuring the costs and benefits of migration provide empirical data to test hypotheses concerning the maintenance of partial migration within a population. In this study, we measured the reproductive differences between resident and migrant females in a pond-breeding amphibian, the red-spotted newt Notophthalmus viridescens . We used large field enclosures to repeatedly sample egg laying over the prolonged breeding season of this species. Resident females did not lay a greater number of eggs or begin laying eggs earlier, despite beginning the breeding season earlier and having a higher mass than migrant newts. The only difference in reproduction we detected was that the eggs of resident females hatched into larger larvae compared with the larvae of migrant females. We discuss this result in the context of other potential trade-offs between residency and migration. This study illustrates the phenology of egg laying of N. viridescens and our results contribute to understanding the population dynamics of partially migratory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号