首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth bands and fault bars, widespread features of feathers that form during regeneration, have largely been studied independently. Growth bands result from normal regeneration: each pair of dark/light bands forms every 24 h. Fault bars are a response to stress during regeneration, creating a translucent line that can break the feather. We studied the relative position and width of these two structures in feathers of nestling and adult white storks Ciconia ciconia. We first confirmed that one growth band represents 24 h of feather regeneration. Fault bars did not occur at random within growth bands: 65.7% (in nestlings) and 45.6% (in adults) of them occurred in one out of six defined segments within a growth band, namely that segment corresponding to the first one‐third of night time hours. The width of fault bars relative to growth bands suggested that fault bars were produced during a median (range) of 7.0 h (2.7–27.0) in nestlings and 3.7 h (1.8–7.9) in adults. Fault bars were concentrated at feather tips in nestlings, but at central locations in adult feathers. Our results suggest that, in general, fault bars are a discrete event of a finite duration occurring mainly during the night (particularly in nestlings). This, along with current knowledge, suggests that acute stressors, rather than chronic ones, are responsible for fault bar formation. Thus, such acute punctual stressors (a matter of minutes) can have long‐lasting (months?years) physiological effects due to the wing load increase from feather breakage caused by fault bars.  相似文献   

2.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

3.
For the purpose of studying circadian rhythms of biomarkers of oxidative stress in broiler chickens maintained under natural photoperiod, we collected blood from the wing veins of 10 matured broiler chickens every three hours for a period of 24 h. The blood samples were analyzed for superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA). The fitting in of single cosinor procedure showed that CAT and MDA exhibited clear circadian rhythms, while SOD did not. The amplitude of daily rhythms for the parameters was small, while the acrophases were all restricted to the light phase of the light:dark cycle. In conclusion, to our knowledge, this is the first time investigation of the circadian rhythms of antioxidants in broilers chickens, reared under natural photoperiod in the tropics. The result may be exploited for a more precise targeting of reactive oxygen species, thereby offering better protection for the cells to combat oxidative stress.  相似文献   

4.
Keratin proteins synthesized by dorsal or tarsometatarsal embryonic chick epidermis in heterotopic and heterospecific epidermal-dermal recombinants were analyzed by polyacrylamide gel electrophoresis and were compared to those produced by normal nondissociated dorsal and tarsometatarsal embryonic skin, as well as to those produced by control homotopic recombinants. Recombinant skins were grafted on the chick chorioallantoic membrane and grown for 8 or 11 days. Recombinants comprising dorsal feather-forming dermis formed feathers, irrespective of the origin of the epidermis. The electrophoretic band patterns of the keratins extracted from these feathers were of typical feather type. Conversely recombinants comprising tarsometatarsal scale-forming dermis formed scales, irrespective of the origin of the epidermis. The band patterns of the keratins extracted from the epidermis of these scales were of typical scale type. Heterospecific recombinants comprising chick dorsal feather-forming epidermis and mouse plantar dermis gave rise to six footpads arranged in a typical mouse pattern. In these recombinants, the chick epidermis produced keratins, the band pattern of which was of typical chick scale type. These results demonstrate that the dermis not only induces the formation of cutaneous appendages in confirmity with its regional origin, but also triggers off in the epidermis the biosynthesis of either of two different keratin types, in accordance with the regional type (feather, scale, or pad) of cutaneous appendages induced. The possible relationship between region-specific morphogenesis and cytodifferentiation is discussed in comparison with results obtained in other kinds of epithelial-mesenchymal interactions.  相似文献   

5.
Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to determine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague-Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 μW/cm(2), lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02, 0.05, 0.06, or 0.08 μW/cm(2) light at night), or 3) constant bright light (123 μW/cm(2)). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. However, these patterns were disrupted in rats exposed to constant bright light. Circadian patterns of plasma melatonin, glucose, lactic acid, and corticosterone were maintained in all rats except those exposed to constant bright light or the highest level of light during the dark phase. Therefore even minimal light contamination during the dark phase can disrupt normal circadian rhythms of endocrine metabolism and physiology and may alter the outcome of scientific investigations.  相似文献   

6.
Photoperiodism and entrainment of the circadian rhythm of locomotor activity were investigated in juvenile Djungarian hamsters. Animals were housed in simulated burrows. Activity was measured as the animal's emergence from a dark nest chamber into an outer box exposed to the room illumination. This burrow emergence activity exhibited marked circadian rhythmicity. Interactions between mother hamsters and their offspring were examined in the simulated burrow system. Male reproductive responses were determined by measuring testicular weights at the time of weaning. It was shown that photoperiodic information received between Days 1 and 15 of life failed to alter the rate of testicular development, but that after Day 15 testicular growth was photoperiod-dependent. The mother, when entrained to a long photoperiod, did not influence the photoperiodic responses of her pups when they were confined to a dark nest box. In contrast, the mother did influence the circadian entrainment patterns of her pups. Pups exhibited a well-developed circadian activity rhythm at weaning with a phase angle roughly similar to that of the mother's activity rhythm. When the maternal rhythms were discrepant with photoperiod information received by the pups directly from the environment, the pups' activity rhythms were synchronized with the light/dark cycle rather than with the rhythm of their mother. Thus, it appears that although pups may first become entrained by maternal cues, they rapidly adjust to the environmental light cycle after leaving the nest.  相似文献   

7.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

8.
Bluhm BH  Burnham AM  Dunkle LD 《Mycologia》2010,102(6):1221-1228
Many metabolic and developmental processes in fungi are controlled by biological rhythms. Circadian rhythms approximate a daily (24 h) cycle and have been thoroughly studied in the model fungus, Neurospora crassa. However relatively few examples of true circadian rhythms have been documented among other filamentous fungi. In this study we describe a circadian rhythm underlying hyphal melanization in Cercospora kikuchii, an important pathogen of soybean. After growth in light or light : dark cycles, colonies transferred to darkness produced zonate bands of melanized hyphae interspersed with bands of hyaline hyphae. Rhythmic production of bands was remarkably persistent in the absence of external cues, lasting at least 7 d after transfer to darkness, and was compensated over a range of temperatures. As in N. crassa, blue light but not red light was sufficient to entrain the circadian rhythm in C. kikuchii, and a putative ortholog of white collar-1, one of the genes required for light responses in N. crassa, was identified in C. kikuchii. Circadian regulation of melanization is conserved in other members of the genus: Similar rhythms were identified in another field isolate of C. kikuchii as well as field isolates of C. beticola and C. sorghi, but not in wild-type strains of C. zeae-maydis or C. zeina. This report represents the first documented circadian rhythm among Dothideomycete fungi and provides a new opportunity to dissect the molecular basis of circadian rhythms among filamentous fungi.  相似文献   

9.
Expression patterns of the cold-circadian rhythm-RNA binding (CCR) and chlorophyll a/b binding (CAB) protein genes have circadian rhythms with phases that are different from each other and are affected differently by cold (4 degrees C) treatment. Cycling of CCR and CAB RNA levels was observed in Arabidopsis seedlings grown for 5 days at 4 degrees C under a light/ dark photoperiod, although the cycling had reduced amplitude compared with normal growth conditions (20 degrees C). CCR RNA levels were elevated in the cold, whereas CAB RNA levels were reduced in the cold relative to levels in control seedlings. Cold pulses (4 degrees C for 12 or 20 hr) under continuous light affected the rhythms of CCR and CAB RNA levels in similar ways. The 12-hr cold pulse caused a 4-hr phase delay in both rhythms, whereas the 20-hr cold pulse resulted in a 12-hr phase delay in both rhythms. The timing of CAB expression 1 (toc1) mutation shortened the period of the CCR rhythm, matching previous results for the regulation of the CAB-luciferase (CAB-luc) transgene in this mutant. The results suggest that CCR and CAB share clock machinery but are regulated by downstream components that are affected differently by the cold. Also, the circadian clock regulating these genes in Arabidopsis has a cold-sensitive phase under continuous light conditions.  相似文献   

10.
The filamentous fungus Neurospora crassa has frequently served as a model organism for the study of circadian rhythms through its ability to form conidial spores on a daily basis. This phenomenon leaves a spatial pattern of conidiation bands along a solid surface of agar after several days of growth. Using time-lapse video, the authors have quantified the rate of conidiation. They have found that conidia do not form at a specified lag time after the growth front is laid down, but rather the band region tends to simultaneously develop over a short time frame. This produces a sharp peak when the conidiation rate is plotted against time. In addition, the authors used time-lapse video to assay growth rate with greater accuracy than previously reported. It is usually assumed that Neurospora's rate of growth is constant, and this assumption of linear growth has been used extensively to determine period and phase of the conidiation circadian rhythm. The authors have confirmed an earlier report of nonlinear growth rate and have shown that the growth rate varies by a factor of about 2 with each circadian cycle. They have demonstrated that the errors in calculating times of conidiation peaks are maximally 1 to 2 h if linearity is assumed. The conidiation rate and growth rate rhythms are not apparent under conditions (using mutants or high or low temperatures) where the spatial banding rhythm is not observed. In light/dark entraining conditions, the conidiation rate and growth rate rhythms maintain the same phase relationship in different T-cycles. These data are consistent with the hypothesis that the growth rate rhythm is a consequence of the conidiation rate rhythm.  相似文献   

11.
Photoperiod is a significant modulator of behavior and physiology for many organisms. In rodents changes in photoperiod are associated with changes in circadian period and photic resetting of circadian pacemakers. Utilizing rhythms of in vivo behavior and in vitro mPer2::luc expression, we investigated whether different entrainment photoperiods [light:dark (L:D) 16:8 and L:D 8:16] alter the period or phase relationships between these rhythms and the entraining light cycle in Per2::luc C57BL/6J mice. We also tested whether mPer2::luc rhythms differs in anterior and posterior suprachiasmatic nucleus (SCN) slices. Our results demonstrate that photoperiod significantly changes the timing of the mPer2::luc peak relative to the time of light offset and the activity onset in vivo. In both L:D 8:16 and L:D 16:8 the mPer2::luc peak maintained a more stable phase relationship to activity offset, while altering the phase relationship to activity onset. After the initial cycle in culture, the period, phase, and peaks per cycle were not significantly different for anterior vs. posterior SCN slices taken from animals within one photoperiod. After short-photoperiod treatment, anterior SCN slices showed increased-amplitude Per2::luc waveforms and posterior SCN slices showed shorter-duration peak width. Finally, the SCN tissue in vitro did not demonstrate differences in period attributable to photoperiod pretreatment, indicating that period aftereffects observed in behavioral rhythms after long- and short-day photoperiods are not sustained in Per2::luc rhythms in vitro. The change in phase relationship to activity onset suggests that Per2::luc rhythms in the SCN may track activity offset rather than activity onset. The reduced amplitude rhythms following long-photoperiod treatment may represent a loss of coupling of component oscillators.  相似文献   

12.
Feathers are complex integumentary appendages of birds and some other theropod dinosaurs. They are frequently coloured and function in camouflage and display. Previous investigations have concluded that fossil feathers are preserved as carbonized traces composed of feather-degrading bacteria. Here, an investigation of a colour-banded feather from the Lower Cretaceous Crato Formation of Brazil revealed that the dark bands are preserved as elongate, oblate carbonaceous bodies 1-2mum long, whereas the light bands retain only relief traces on the rock matrix. Energy dispersive X-ray analysis showed that the dark bands preserve a substantial amount of carbon, whereas the light bands show no carbon residue. Comparison of these oblate fossil bodies with the structure of black feathers from a living bird indicates that they are the eumelanin-containing melanosomes. We conclude that most fossil feathers are preserved as melanosomes, and that the distribution of these structures in fossil feathers can preserve the colour pattern in the original feather. The discovery of preserved melanosomes opens up the possibility of interpreting the colour of extinct birds and other dinosaurs.  相似文献   

13.
Activity of total lactate dehydrogenase (LDH) and of the isozyme X (LDH X or C4) have been determined at 2 hr intervals during 24 hr cycles in testis of adult rats maintained since birth in a photoperiod of 14 hr light: 10 hr dark. LDH X activity of epididymal sections (caput, corpus and cauda) from the same animals was also determined. Total LDH and LDH X activities in testis exhibited circadian rhythms with different timing. LDH X in the three portions of epididymis showed diurnal variations similar to those in testis. Rats subjected to constant light or constant dark presented marked modifications of LDH X profiles, indicating that the photoperiod plays a synchronizer role. While total soluble proteins did not show variations in testis of rats exposed to the photoperiod, a circadian rhythm was demonstrated in animals maintained in constant light or dark.  相似文献   

14.
The sorghum (Sorghum bicolor L. Moench) cultivar 58M, which contains the null mutant phytochrome B gene, shows reduced photoperiodic sensitivity and exhibits a shade-avoidance phenotype. Ethylene production by seedlings of wild-type and phytochrome B mutant cultivars was monitored every 3 h, and both cultivars were found to produce ethylene in a circadian rhythm, with peak production occurring during the day. The phytochrome B mutant produces rhythmic peaks of ethylene with approximately 10 times the amplitude of the wild-type counterpart with the same period and diurnal timing. The source of the mutant's additional ethylene is the shoot. The diurnal rhythm can be produced with either light or temperature cycles; however, both light and temperature cycles are required for circadian entrainment. The temperature signal overrides the light signal in the production of diurnal rhythms, because seedlings grown under thermoperiods reversed with the photoperiod produced ethylene peaks during the warm nights. To examine the effect of extreme shading on ethylene production, seedlings were grown under dim, far-red-enriched light. This treatment duplicated the phytochrome B mutant's shade-avoidance phenotype in the wild type and caused the wild type to produce ethylene peaks similar to those observed in the mutant. The results confirm that phytochrome B is not required for proper function of circadian timing, but it may be involved in modulating physiological rhythms driven by the biological clock oscillator.  相似文献   

15.
To investigate the mechanism that controls circadian rhythms in mammalian peripheral tissues, we housed mice in short days (6 h light: 18 h dark) or long days (18 h light: 6 h dark) and examined the rhythmic expression patterns of the mammalian clock genes mPer1 , mPer2 and mPer3 and a clock-controlled gene Dbp in the mouse heart. Northern blot analyses showed that peak levels of mPer1 mRNA expression in long days were about 50 % higher than those in short days. On the contrary the amplitude of the mPer2 mRNA peak in long days was about 25 % lower than that in short days. We could not find any effect of photoperiod on either the amplitude or waveform of the rhythms of mPer3 and Dbp mRNAs. Photoperiod differentially affected the expression of three mPer genes even in a peripheral tissue of mice.  相似文献   

16.
The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.  相似文献   

17.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Restricted daily feeding schedules entrain circadian oscillators that generate food anticipatory activity (FAA) rhythms in nocturnal rodents. The location of food-entrainable oscillators (FEOs) necessary for FAA remains uncertain. The most common procedure for inducing circadian FAA is to limit food access to a few hours in the middle of the light period, when activity levels are normally low. Although light at night suppresses activity (negative masking) in nocturnal rodents, it does not prevent the expression of daytime FAA. Nonetheless, light could reduce the duration or magnitude of FAA. If so, then neural or genetic ablations designed to identify components of the food-entrainable circadian system could alter the expression of FAA by affecting behavioral responses to light. To assess the plausibility of light as a potential mediating variable in studies of FAA mechanisms, we quantified FAA in rats and mice alternately maintained in a standard full photoperiod (12h of light/day) and in a skeleton photoperiod (two 60 min light pulses simulating dawn and dusk). In both species, FAA was significantly and reversibly enhanced in the skeleton photoperiod compared to the full photoperiod. In a third experiment, FAA was found to be significantly attenuated in rats by pinealectomy, a procedure that has been reported to enhance some effects of light on behavioral circadian rhythms. These results indicate that procedures affecting behavioral responses to light can significantly alter the magnitude of food anticipatory rhythms in rodents.  相似文献   

19.
The transport and assimilation of the various forms of biologically available nitrogen by phytoplankton, and the subsequent biosynthesis of N-containing macromolecules, have the potential to respond in different ways during the daily growth cycle. This review examines five types of effect that may influence the daily pattern of nitrogen uptake and metabolism: light versus dark (the day/night cycle); changes in irradiance during the day (including the diurnal rise and fall in photon fluence rates); circadian rhythms (endogenous patterns of variation which may continue in the absence of external environmental forcing); periodic variations in exogenous nitrogen supply; and the 24-hour dynamics of stratification and mixing. The hydrodynamic effects operate through a variety of direct and indirect controls, and can substantially modify the diel rhythmicity of phytoplankton growth.  相似文献   

20.
Recent work with exotic 24-h light:dark:light:dark (LDLD) cycles indicates surprising flexibility in the entrainment patterns of Syrian hamsters. Following exposure to an LDLD cycle, hamsters may adopt a form of rhythm splitting in which markers of subjective night (e.g., activity, melatonin) are expressed in each of the twice daily scotophases. This pattern contrasts markedly with that of conventionally entrained hamsters in which markers of subjective night are expressed once daily in only 1 of the 2 dark periods. The "split" entrainment pattern was examined further here in Syrian and Siberian hamsters and in mice exposed to LDLD 7:5:7:5, a condition that reliably induces split activity rhythms in all 3 species. The phase angle of entrainment and activity duration were generally similar comparing the 2 daily activity bouts in each species. The stability of this split entrainment state was assessed by deletions of photophases on individual days, by exposure to skeleton photoperiods, and by transfer to constant darkness. As in Syrian hamsters, the one-time substitution of darkness for one 7-h photophase did not grossly alter activity patterns of Siberian hamsters but acutely disrupted the split rhythms of mice. Skeleton light pulses of progressively shorter duration did not significantly alter split entrainment patterns of either Syrian or Siberian hamsters. Both species continued to exhibit stable entrainment with activity expressed in alternate scotophases of an LD 1:5 cycle presented 4 times daily. In contrast, the split activity rhythms of mice were not maintained under skeleton pulses. In constant darkness, rhythms of Siberian hamsters remained distinctly split for a minimum of 2 cycles. Split entrainment to these novel LDLD and 4-pulse skeleton lighting regimes demonstrates a marked degree of plasticity common to the circadian systems of several rodent species and identifies novel entrainment patterns that may be reliably elicited with simple environmental manipulations. Inter- and intraspecific differences in the stability of split activity rhythms likely reflect differences in coupling interactions between the component circadian oscillators, which, adopting separate phase relations to these novel LD cycles, yield a split entrainment pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号