首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because iso‐ and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co‐occurring anisohydric Juniperus monosperma and isohydric Pinus edulis to pressure‐volume analysis with and without prior artificial rehydration. In J. monosperma, the shoot water potential at turgor loss (ΨTLP) ranged from ?3.4 MPa in artificially rehydrated shoots to ?6.6 MPa in shoots with an initial Ψ of ?5.5 MPa, whereas in P. edulis mean ΨTLP remained at ~ ?3.0 MPa over a range of initial Ψ from ?0.1 to ?2.3 MPa. The shoot osmotic potential at full turgor and the bulk modulus of elasticity also declined sharply with shoot Ψ in J. monosperma, but not in P. edulis. The contrasting behaviour of J. monosperma and P. edulis reflects differences in their capacity for homeostatic regulation of turgor that may be representative of aniso‐ and isohydric species in general, and may also be associated with the greater capacity of J. monosperma to withstand severe drought.  相似文献   

2.
The concept of iso‐ vs. anisohydry has been used to describe the stringency of stomatal regulation of plant water potential (ψ). However, metrics that accurately and consistently quantify species’ operating ranges along a continuum of iso‐ to anisohydry have been elusive. Additionally, most approaches to quantifying iso/anisohydry require labour‐intensive measurements during prolonged drought. We evaluated new and previously developed metrics of stringency of stomatal regulation of ψ during soil drying in eight woody species and determined whether easily‐determined leaf pressure–volume traits could serve as proxies for their degree of iso‐ vs. anisohydry. Two metrics of stringency of stomatal control of ψ, (1) a ‘hydroscape’ incorporating the landscape of ψ over which stomata control ψ, and (2) the slope of the daily range of ψ as pre‐dawn ψ declined, were strongly correlated with each other and with the leaf osmotic potential at full and zero turgor derived from pressure–volume curves.  相似文献   

3.
Seasonal and diurnal measurements of leaf water potential (ψ1), relative water content (RWC) and stomatal conductance (gs) were made in the field on 19-year old Prunus salicina (L.) cv. Santa Rosa, a deciduous fruit tree species, irrigated with 3 different concentrations of saline water over a 3 year period (1985-1987). With the exception of stage III of fruit growth, little or no treatment difference in Φ1, leaf turgor potential (Φp), or RWC was noted during the day. Seasonal averages of morning (0700-0900) and afternoon (1500-1700) Φp did not decline with increasing salinity, indicating long-term osmotic adjustment in this species. Maintenance of leaf water status under saline conditions was in part a consequence of increased stomatal closure, with a subsequent reduction in leaf transpiration rate. However, during stage III of fruit growth, an increase in mean afternoon (1200-1700) stomatal conductance of 26-117%, independent of salinity treatment, was observed in 1985 and again in 1987. Higher conductance values during this period may be associated with rapid fruit expansion and greater assimilate demand. The observed increase in conductance resulted in greater leaf water loss and larger measured differences in midday ψ1 between salinity treatments. This research indicates that for Prunus salicina in the field, salinity stress resulted in leaf water deficits only during the final period of fruit expansion and ripening.  相似文献   

4.
Two experiments examined simultaneous changes in leaf area (AL), root length (Lr), stomatal conductance (gs), leaf water potential (ΨL), transpiration and hydraulic plant conductance per unit leaf area (G) during the first three shoot cycles of northern red oak (Quercus rubra L.) grown under favourable and controlled conditions. Each shoot cycle consisted of bud swell, stem elongation, leaf expansion and rest; roots grew almost continuously. The gs of all leaves decreased substantially while leaves of the newest flush were expanding and increased modestly when seedling leaf area remained constant. Overall, gs decreased. The ΨL of mature leaves decreased during leaf expansion and increased by an equivalent amount during intervening periods. Possible explanations for the paired changes in gs and ΨL are considered. Changes in G closely paralleled those of canopy gs. These parallel changes during polycyclic seedling growth should act to keep seedling ΨL relatively constant as plant size increases and thereby help prevent ΨL from dropping to levels that would cause runaway embolism.  相似文献   

5.
Stomatal conductance of individual leaves was measured in a maize field, together with leaf water potential, leaf turgor, xylem ABA concentration and leaf ABA concentration in the same leaves. Stomatal conductance showed a tight relationship with xylem ABA, but not with the current leaf water status or with the concentration of ABA in the bulk leaf. The relationship between stomatal conductance and xylem [ABA] was common for variations in xylem [ABA] linked to the decline with time of the soil water reserve, to simultaneous differences between plants grown on compacted, non-compacted and irrigated soil, and to plant-to-plant variability. Therefore, this relationship is unlikely to be fortuitous or due to synchronous variations. These results suggest that increased concentration of ABA in the xylem sap in response to stress can control the gas exchange of plants under field conditions.  相似文献   

6.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

7.
Co-ordination of vapour and liquid phase water transport properties in plants   总被引:26,自引:7,他引:19  
The pathway for water movement from the soil through plants to the atmosphere can be represented by a series of liquid and vapour phase resistances. Stomatal regulation of vapour phase resistance balances transpiration with the efficiency of water supply to the leaves, avoiding leaf desiccation at one extreme, and unnecessary restriction of carbon dioxide uptake at the other. In addition to maintaining a long-term balance between vapour and liquid phase water transport resistances in plants, stomata are exquisitely sensitive to short-term, dynamic perturbations of liquid water transport. In balancing vapour and liquid phase water transport, stomata do not seem to distinguish among potential sources of variation in the apparent efficiency of delivery of water per guard cell complex. Therefore, an apparent soil-to-leaf hydraulic conductance based on relationships between liquid water fluxes and driving forces in situ seems to be the most versatile for interpretation of stomatal regulatory behaviour that achieves relative homeostasis of leaf water status in intact plants. Components of dynamic variation in apparent hydraulic conductance in intact plants include, exchange of water between the transpiration stream and internal storage compartments via capacitive discharge and recharge, cavitation and its reversal, temperature-induced changes in the viscosity of water, direct effects of xylem sap composition on xylem hydraulic properties, and endogenous and environmentally induced variation in the activity of membrane water channels in the hydraulic pathway. Stomatal responses to humidity must also be considered in interpreting co-ordination of vapour and liquid phase water transport because homeostasis of bulk leaf water status can only be achieved through regulation of the actual transpirational flux. Results of studies conducted with multiple species point to considerable convergence with regard to co-ordination of stomatal and hydraulic properties. Because stomata apparently sense and respond to integrated and dynamic soil-to-leaf water transport properties, studies involving intact plants under both natural and controlled conditions are likely to yield the most useful new insights concerning stomatal co-ordination of transpiration with soil and plant hydraulic properties.  相似文献   

8.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

9.
10.
Photosynthetica - The relationship between soil water availability, physiological responses [leaf chlorophyll (Chl) fluorescence, leaf water potential (Ψ), and stomatal conductance (g s)] and...  相似文献   

11.
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf‐mass‐per‐area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly used leaf‐level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs, and then explored the abiotic (i.e. month, site‐month interaction) and biotic (i.e. tree‐species‐specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2 = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait‐based approach to improve modeling of carbon and water exchange in tropical forests.  相似文献   

12.
The possible link between stomatal conductance (gL), leaf water potential ( Ψ L) and xylem cavitation was studied in leaves and shoots of detached branches as well as of whole plants of Laurus nobilis L. (Laurel). Shoot cavitation induced complete stomatal closure in air‐dehydrated detached branches in less than 10 min. By contrast, a fine regulation of gL in whole plants was the consequence of Ψ L reaching the cavitation threshold ( Ψ CAV) for shoots. A pulse of xylem cavitation in the shoots was paralleled by a decrease in gL of about 50%, while Ψ L stabilized at values preventing further xylem cavitation. In these experiments, no root signals were likely to be sent to the leaves from the roots in response to soil dryness because branches were either detached or whole plants were growing in constantly wet soil. The stomatal response to increasing evaporative demand appeared therefore to be the result of hydraulic signals generated during shoot cavitation. A negative feedback link is proposed between gL and Ψ CAV rather than with Ψ L itself.  相似文献   

13.
亚热带森林演替树种叶片气孔导度对环境水分的水力响应   总被引:4,自引:0,他引:4  
利用LI-1600稳态气孔计和PMS压力室,在田间测定了群落演替早期强阳生性树种桃金娘(Rhodomyrtus tomentosa)和三叉苦(Evodia lepta)、偏中性的阳生性树种荷木(Schima superba)、群落演替后期的耐荫树种鸭脚木(Schefllera octophylla)和九节(Psychotrie rubra)的叶片气孔导度(gs)和叶片水势(ΨL),研究不同演替阶段树种的气孔导度对环境水分的响应.结果表明,早上叶片有较高的ΨL,随着时间推移ΨL逐渐降低,与此同时比叶水力导度(KL)随ΨL降低而下降,桃金娘、三叉苦、荷木、鸭脚木和九节水力导度初始最低值时的ΨL分别为-1.6、-1.42、-1.30、-0.9MPa和-1.05MPa.随着ΨL降低,田间测定的gs开始从上午的较低值上升至约中午时的最大值,随后开始降低,此时的ΨL分别为-1.58、-1.52、-1.35、-1.02MPa和-1.0MPa.不同植物种类有不同的KL初始最低值的ΨL和gs达到最大值的ΨL.但不论何种供试树种,KL最低值时的ΨL与gs开始从最大值下降时的ΨL相近;显示KL与gs在动态变化中存在协调关系.树种间的gs和KL对ΨL的不同响应显示桃金娘和三叉苦的KL最低值时和gs开始下降时的ΨL均较鸭脚木和九节对应的ΨL低(p<0.05),意味着演替早期树种能在较强水分胁迫下保持较高的气孔导度.这一水力特性保证树种在水分胁迫下维持叶片的光合速率,有利于其在群落中的生长和优势地位的维护,而演替后期树种在较高ΨL下气孔关闭,降低了光合速率.全球变暖和环境进一步干旱可能成为限制亚热带森林植物群落的正向演替进程的潜在因素之一.  相似文献   

14.
Potted tomato plants (Lycopersicon esculentum Mill. cv. Amalia) were submitted to three different treatments: control (C) plants were maintained at day/night temperature of 25/18 °C; preconditioned plants (PS) were submitted to two consecutive periods of 4 d each, of 30/23 and 35/28 °C before being exposed to a heat stress (40/33 °C lasting 4 d) and non-preconditioned (S) plants were maintained in the same conditions as the C plants and exposed to the heat stress. The inhibition of plant growth was observed only in PS plants. Heat stress decreased chlorophyll content, net photosynthetic rate and stomatal conductance in both PS and S plants. However, PS plants showed good osmotic adjustment, which enabled them to maintain leaf pressure potential higher than in S plants. Furthermore, at the end of the recovery period PS plants had higher pressure potential and stomatal conductance than in S plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
麦田冠层气孔导度的分层研究   总被引:2,自引:0,他引:2  
小麦灌浆期和乳熟期冠层各层叶片上、下表面的气孔导度之间呈正相关关系;冠层不同层的叶片气孔导度从早到傍晚有平行变化的趋势,数值上存在较大的差异,一般从冠层上到下递减。经分析,这主要与冠层叶片接受的光强自上而下递减有关,且这时所对应的叶片水势自冠层上到下递增的幅度大。测算结果表明,冠层气孔导度白天亦呈明显的日变化,灌浆期的值大于乳熟期的值。  相似文献   

17.
The response of Brassica carinata hybrids and their parents to moisture stress at different growth stages was studied. B. carinata 226 was found to be susceptible to stress at pre-flowering and post-flowering stages while B. carinata 241 at flowering stage. Neither the changes in stomatal conductance nor in chlorophyll content could fully explain the reduction in net photosynthetic rate (PN) induced by stress. B. carinata 241 had higher leaf water potential (ψw) although, it had lower PN compared to B. carinata 226. Both the parents had lower PN as well as leaf ψw. The stress response of PN in hybrids followed that in their respective female parents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Native tallgrass prairie in NE Kansas was exposed to elevated (twice ambient) or ambient atmospheric CO2 levels in open-top chambers. Within chambers or in adjacent unchambered plots, the dominant C4 grass, Andropogon gerardii, was subjected to fluctuations in sunlight similar to that produced by clouds or within canopy shading (full sun > 1500 μmol m−2 s−1 versus 350 μmol m−2 s−1 shade) and responses in gas exchange were measured. These field experiments demonstrated that stomatal conductance in A. gerardii achieved new steady state levels more rapidly after abrupt changes in sunlight at elevated CO2 when compared to plants at ambient CO2. This was due primarily to the 50% reduction in stomatal conductance at elevated CO2, but was also a result of more rapid stomatal responses. Time constants describing stomatal responses were significantly reduced (29–33%) at elevated CO2. As a result, water loss was decreased by as much as 57% (6.5% due to more rapid stomatal responses). Concurrent increases in leaf xylem pressure potential during periods of sunlight variability provided additional evidence that more rapid stomatal responses at elevated CO2 enhanced plant water status. CO2-induced alterations in the kinetics of stomatal responses to variable sunlight will likely enhance direct effects of elevated CO2 on plant water relations in all ecosystems.  相似文献   

19.
We describe here an integration of hydraulic and chemical signals which control stomatal conductance of plants in drying soil, and suggest that such a system is more likely than control based on chemical signals or water relations alone. The determination of xylem [ABA] and the stomatal response to xylem [ABA] are likely to involve the water flux through the plant. (1) If, as seems likely, the production of a chemical message depends on the root water status (Ψr), it will not depend solely on the soil water potential (Ψs) but also on the flux of water through the soil-plant-atmosphere continuum, to which are linked the difference between Ψr and Ψs. (2) The water flux will also dilute the concentration of the message in the xylem sap. (3) The stomatal sensitivity to the message is increased as leaf water potential falls. Stomatal conductance, which controls the water flux, therefore would be controlled by a water-flux-dependent message, with a water-flux-dependent sensitivity. In such a system, we have to consider a common regulation for stomatal conductance, leaf and root water potentials, water flux and concentration of ABA in the xylem. In order to test this possibility, we have combined equations which describe the generation and effects of chemical signals and classical equations of water flux. When the simulation was run for a variety of conditions, the solution suggested that such common regulation can operate. Simulations suggest that, as well as providing control of stomatal conductance, integration of chemical and hydraulic signalling may also provide a control of leaf water potential and of xylem [ABA], features which are apparent from our experimental data. We conclude that the root message would provide the plant with a means to sense the conditions of water extraction (soil water status and resisance to water flux) on a daily timescale, while the short-term plant response to this message would depend on the evaporative demand.  相似文献   

20.
Liu  M.Z.  Jiang  G.M.  Niu  S.L.  Li  Y.G.  Gao  L.M.  Ding  L.  Peng  Y. 《Photosynthetica》2003,41(2):293-296
Net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and leaf water potential (Ψl) of an annual pioneer C4 grass (Agriophyllum squarrosum) were compared under different simulated precipitation events in a field of Hunshandak Sandland, China. The increase of soil water content (SWC) had significant effect on these physiological traits (p<0.001). In the vegetative stage, the values of P N, E, and g s went up sharply when SWC increased at the beginning, while they went down with continuous increase of SWC. P N, E, and g s increased 1.4, 1.7, and 1.7 fold, respectively, with SWC range from 6.7 to 11.6 %. In the reproductive stage, similar trends were found, except for the climate with a higher SWC. This indicated that A. squarrosum was very sensitive to the small increment of SWC which might have a large photosynthetic potential. Ψl increased by about 8 % as the SWC changed from 6.7 to 8.8 %, and then maintained a steady level when the SWC was higher than 8.8 %, while the values of P N, E, and g s kept increasing even after this SWC. This might indicate that the adjustment of Ψl response to the changes of SWC lagged that of the photosynthetic parameters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号