首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between functional traits and environmental gradients are useful to identify different community assembly processes. In this work, we used an approach based on functional traits to analyse if changes in hydroperiod and tree covers of ponds are relevant for local amphibian community assembly processes. Ephemeral ponds with low vegetation cover are expected to impose constraints on different species with particular trait combinations and, therefore, to exhibit communities with lower functional diversity than more stable ponds with greater tree cover. Sampling was conducted in 39 temporary ponds located along vegetation and hydroperiod gradients in the most arid portion of the Chaco ecoregion. Seven functional traits were measured in each species present in the regional pool. Associations between these traits and environmental gradients were detected using multivariate ordination techniques and permutation test (RLQ and fourth‐corner analyses respectively). Functional diversity indices were then calculated and related to variations in the environmental gradients. The results obtained allowed us to identify different sets of traits associated with hydroperiod and tree cover, suggesting that these environmental variables are relevant for structuring amphibian communities according to interspecific variations in functional traits from both, larval and adult stages. Contrary to our expectations, communities associated with more stable ponds and with greater tree cover exhibited lower functional diversity than expected by chance (and were the ponds with highest species richness). This result indicates that the reduction in relative importance of environmental restrictions imposed by a very short hydroperiod and the lack of tree cover, favours different species of the regional pool that are similar in several functional traits. Accordingly, communities associated with stable ponds with high tree cover exhibited high functional redundancy.  相似文献   

2.
Understanding the recovery dynamics of ecosystems presents a major challenge in the human-impacted tropics. We tested whether secondary forests follow equilibrium or non-equilibrium dynamics by evaluating community reassembly over time, across different successional stages, and among multiple life stages. Based on long-term and static data from six 1-ha plots in NE Costa Rica, we show that secondary forests are undergoing reassembly of canopy tree and palm species composition through the successful recruitment of seedlings, saplings, and young trees of mature forest species. Such patterns were observed over time within sites and across successional stages. Floristic reassembly in secondary forests showed a clear convergence with mature forest community composition, supporting an equilibrium model. This resilience stems from three key factors co-occurring locally: high abundance of generalist species in the regional flora, high levels of seed dispersal, and local presence of old-growth forest remnants.  相似文献   

3.
Aim To measure and quantify community phylogenetic structure to evaluate how evolutionary, ecological and biogeographic processes have shaped the distributions and assemblage of tropical and subtropical rain forest tree species across local, regional and continental scales. Location Australia. Methods We used 596 assemblage‐level samples and 1137 woody species in rain forest vegetation sampled across two latitude regions (tropics and sub‐tropics) and five distinct areas. Based on this dataset, we obtained and analysed species‐level trait values (for leaf size, seed size, wood density and maximum height at maturity), measures of community phylogenetic structure and species turnover across space (beta) and evolutionary time (phylobeta). Results Phylobeta values showed that at continental scales (i.e. across the latitude regions combined) species replacement, as turnover in assemblages through time, was by more phylogenetically distant (i.e. less closely related) taxa. Within latitude regions replacement was by more closely related taxa. Assemblages of species were more phylogenetically clustered across the whole phylogeny (net relatedness index) and with respect to more recent divergences (nearest related taxon index) where the effects of historic disturbance (climatic oscillations) had been greater, and less clustered in long‐term stable (refugial) locations. Local species composition in the stable wet tropics showed significant phylogenetic evenness, but there was no corresponding evenness in distributions of the ecological traits measured. Main conclusions Despite a shared evolutionary and biogeographic history, the two regions diverged from each other before the development of internal divergences. Phylogenetic evenness is more evident in long‐term stable habitats (refugia) where species interact in conserved niches. Phylogenetic clustering is more evident where recolonization of more highly disturbed areas from historically reduced species pools reflects filtering of species into phylogenetically preferred habitats.  相似文献   

4.
On the definition of ecological species groups in tropical rain forests   总被引:12,自引:0,他引:12  
The species richness of tropical rain forests creates difficulties for ecological analysis. It may usefully be simplified by defining ecological species groups whose members share characteristics of importance for determining forest structure and composition. Many such classifications have been published, but few are properly explained. The terminology is confused from lack of precise definitions. We propose a simple division of tree species into two groups or guilds, pioneer and non-pioneer (or climax), based on seed germination and seedling establishment. Within each guild there is continuous variation and we recommend arbitrary subdivision by height at maturity. We believe this classification to be applicable in all tropical rain forests.Abbreviations TRF = tropical rain forest(s) - LHW = light hardwood species - HHW = heavy hardwood species  相似文献   

5.
A rapidly increasing effort to merge functional community ecology and phylogenetic biology has increased our understanding of community assembly. However, studies using both phylogenetic‐ and trait‐based methods have been mainly conducted in old‐growth forests, with fewer studies in human‐disturbed communities, which play an increasingly important role in providing ecosystem services as primary forests are degraded. We used data from 18 1‐ha plots in tropical old‐growth forests and secondary forests with different disturbance histories (logging and shifting cultivation) and vegetation types (tropical lowland and montane forests) on Hainan Island, southern China. The distributions of 11 functional traits were compared among these six forest types. We used a null model approach to assess the effects of disturbance regimes on variation in response and effect traits and community phylogenetic structure across different stem sizes (saplings, treelets, and adult trees) and spatial scales (10–50 m). We found significant differences in the distribution of functional traits in highly disturbed lowland sites versus other forest types. Many individuals in highly disturbed lowland sites were deciduous, spiny, with non‐fleshy fruits and seeds dispersed passively or by wind, and low SLA. The response traits of coexisting species were clustered in all sites except for highly disturbed lowland sites where evenness was evident. There were different distributions of effect traits for saplings and treelets among different forest types but adult trees showed stronger clustering of trait values with increasing spatial scale among all forest types. Phylogenetic clustering predominated across all size classes and spatial scales in the highly disturbed lowland sites, and evenness in other forest types. High disturbance can lead to abiotic filtering, generating a community dominated by closely related species with disturbance‐adapted traits, where biotic interactions play a relatively minor role. In lightly disturbed and old growth forests, multiple processes simultaneously drive the community assembly, but biotic processes dominate at the fine scale.  相似文献   

6.
Dispersal-assembly theories of species coexistence posit that environmental factors play no role in explaining community diversity and structure. Dispersal-assembly theories shed light on some aspects of community structure such as species-area and species-abundance relationships. However, species environmental associations also affect these measures of community structure. Measurements of species niche breadth and overlap address this influence. Using a new continuous measure of niche and a dispersal-assembly null model that maintains species niche breadth and aggregation, we tested two hypotheses assessing the effects of habitat heterogeneity on the ability of dispersal-assembly theories to explain community niche structure. We found that in both homogenous and heterogeneous environments dispersal-assembly theories cannot fully explain observed niche structure. The performance of the dispersal-assembly null models was particularly poor in heterogeneous environments. These results indicate that non-dispersal based mechanisms are in part responsible for observed community structure and measures of community structure which include species environmental associations should be used to test theories of species diversity.  相似文献   

7.
8.
1. The succession of carrion-associated (necrophilous) insects on decomposing carrion is well documented. To exploit the changing nutritious and dynamic resources available throughout the carrion decomposition process, different species colonise and consume carrion in a predictable temporal sequence. The traits of these necrophilous insects should reflect their ecological strategies. Morphological traits of these insects, such as body size and wing size, however, have not previously been examined during active and advanced decomposition. 2. We used fourth-corner multivariate generalised linear models to identify insect community morphological trait patterns and to quantify their change through time on decomposing rabbit carcasses in grassland and woodland environments. 3. We found that larger-bodied species of flies and carrion-specialist beetles were associated with the early stages of decomposition. The morphological traits of ants, in contrast, showed no changes at carcasses through time and instead showed body size differences between grassland and woodland environments. 4. Our findings indicate that specialist flies and beetles that arrive early in the decomposition process possess traits that enable rapid discovery of carrion at a large scale. Generalist beetles and ants do not share this same trait and are instead adapted to locate and consume a wider variety of resources in their preferred habitat type at their local scale. 5. Our results provide insights into the morphological adaptations linked to the ecological strategies of distinct components of carrion insect communities. Further, our results offer insights into the community assembly dynamics that structure the communities of necrophilous insect species.  相似文献   

9.
10.
Old-growth rain forests that are dominated by a single canopy species occur throughout the tropics, though they account for a limited proportion of the total rain forest area. These forests have been considered anomalies in which development of a more diverse community is deflected by harsh conditions. Very poor soils or an otherwise extreme environment may promote monodominance by excluding potentially competing species, but it is now apparent that monodominant tropical forests also develop under more benign conditions. Field studies have shown that a single species may dominate on undisturbed sites where the soils are similar to those of adjacent old-growth, mixed forests. In these situations the dominant is a superior competitor and/or is particularly tolerant to stresses such as shade. Assertion of dominance by a single species in an old-growth forest appears most likely in areas where the species pool contains few late-succession species with similar life history traits.  相似文献   

11.
12.
13.
The most diverse tree communities on earth, the tropical wet forests, to a large degree remain ecological enigmas. What accounts for the coexistence of 100 or more tree species per hectare, compared to the 15 or fewer found in most temperate forests? What are the lifespans of tropical forest trees? What factors control their populations through time and space? Do the different species have highly individual regeneration patterns, or are many in fact ecological equivalents? Although we are far from having satisfactory answers to these questions, recent studies of regeneration processes are leading toward new interpretations of these complex communities.  相似文献   

14.
Most terrestrial species on Earth are ectothermic and track temperature at small spatial scales, from sun flecks to cool shaded spots. Current assessments of thermal heterogeneity in complex environments are predominately characterized by ambient temperature. This omission of solar radiation may lead to inaccurate conclusions regarding thermoregulation and distribution of species. We use thermal cameras to gather data on temperature heterogeneity in structurally complex rain forest environments. Using thermographic photographs, we capture the multidimensionality of climate created by vegetation by collecting over 76,000 temperature samples within approximately 1 m2 quadrats. The method was tested against three standard methods that record air temperature to determine possible omissions in capturing thermal heterogeneity in four geographic locations—Colombia, Borneo, Madagascar, and Australia. Across all locations, there was greater thermal heterogeneity in surface temperature than captured from ambient temperature technologies. Spatial variability in surface temperature on 1 d was greater than temporal variability of ambient temperature across the entire month, with extreme deviation from ambient temperatures. Importantly, when compared to the lower bounds for optimal performance for five tropical Anolis species, this technology captured thermal regimes that support the thermoregulatory needs of these species, whereas ambient air temperature methods suggested that these species would be in thermal debt. Sampling surface temperature at high resolutions across space in combination with intensive sampling of ambient temperature and informed spatial modeling should improve our understanding of the distribution of ectothermic species living within thermally heterogeneous environments.  相似文献   

15.
Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.  相似文献   

16.
Abstract. The few surveys made and taxonomic considerations suggest that African dry forests are commonly diverse and dominated by vesicular-arbuscular mycorrhizal, VAM tree species. Ectomycorrhizal, ECM tree species are usually absent or occur in small numbers, but occasionally dominate. Nitrogen-fixing species (which also mostly form VAM) are, in general, few. Theoretical considerations and the limited data available suggest that phosphorus is the limiting nutrient. This probably explains the paucity of N2-fixing species. It is more difficult to explain why VAM-species and not ECM-species dominate, or vice versa, in situations where P is limiting. A dominance of either type will be reinforced by processes mediated by hyphal networks. Because few taxa form ECM, such processes will promote the development of low diversity stands, whereas very many species can share the benefits of a VAM-network. Fertilizer trials are needed to identify precisely the limiting nutrient(s), and the reactions of species with different root symbioses to additions of N and P. In connection with such studies the fractional contribution of N2 to N2-fixing spp. can be estimated by 15N-methodology. Analogous possibilities do not exist for work on mycorrhizas, but comparative studies of A-values, or phosphatase and protease activities would be worthwhile. A promising approach would be studies of ECM-and VAM-seedlings transplanted into a variety of sites, including each other's habitats.  相似文献   

17.
Forest structure and carbon dynamics in Amazonian tropical rain forests   总被引:5,自引:0,他引:5  
Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha–1 respectively), less biodiversity (Shannon–Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha–1) than the Manaus site (626 trees ha–1, 180.1 Mg C ha–1), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41–45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha–1 year–1. At all sites, trees in the 10–30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha–1 year–1 in Manaus (40% of annual mean) and 0.9 Mg C ha–1 year–1 (33% of annual mean) in Santarém, though this variability showed no significant relation with precipitation among years. Initial estimates of the C balance of live wood including recruitment and mortality as well as growth suggests that live wood biomass is at near steady-state in Manaus, but accumulating at about 1.5 Mg C ha–1 at the other two sites. The causes of C imbalance in living wood pools in Santarém and Rio Branco sites are unknown, but may be related to previous disturbance at these sites. Based on size distribution and growth rate differences in the three sites, we predict that trees in the Manaus forest have greater mean age (~240 years) than those of the other two forests (~140 years).  相似文献   

18.
Understanding patterns and mechanisms of variation in the compositional structure of communities across spatial scales is one of the fundamental challenges in ecology and biogeography. In this study, we evaluated the effects of spatial extent (i.e. size of study region) on: 1) whether community composition can be better explained by environmental (i.e. niche‐based) or spatial (e.g. dispersal‐based) processes ; and 2) how climate and soils contribute to the influence of environment on plant community composition. We surveyed community composition across a network of 398 forest plots spanning a ~4000 m elevational gradient in the Madidi region in northwestern Bolivia. Using redundancy analyses and hierarchical variation partitioning, we disentangled the effects of environmental and spatial predictors on species composition, further decomposing the environmental effect between its climatic and soil components. We repeated analyses for 200 sub‐regions ranging in spatial extent from ~250 to ~17 500 km2. Our analyses show a high degree of idiosyncrasy in results that come from different sub‐regions. Despite this variability, we were able to identify various important patterns in the structure of tropical plant communities in our study system. First, even though sub‐regions varied in size by nearly two orders of magnitude, the total amount of explained variation in community composition was scale independent; at all spatial scales, environment and space accounted for about 25% of the differences in community composition among plots. Second, the measured environmental effect was higher than the spatial effect on average and in the vast majority of sub‐regions. This was true regardless of the spatial extent of analysis. Finally, we found that both climatic and soil variables accounted for significant fractions of variation, but climate was always more important than soils.  相似文献   

19.
丁易  臧润国 《生物多样性》2008,16(2):103-109
落叶是树木适应环境变化的一种方式,水分梯度往往是导致热带森林落叶物种比例产生差异的最主要原因。为研究落叶树种在森林次生演替过程中的变化规律,我们在海南岛霸王岭林区内调查了4个林龄阶段(5年、12年、25年和55年)的刀耕火种弃耕地自然恢复群落样地。在5.25hm2的全部样地内共记录到高H〉0.1m的落叶木本植物24种,隶属于15科21属。其中紫葳科、大戟科、含羞草科是含落叶树种最多的3个科,黄牛木(Cratoxylum cochinchinens)、猪肚木(Canthium horridum)、山柑算盘子(Glochidion fagifolium)是多度最高的3个落叶树种,枫香树(Liquidambar formosana)、黄牛木、山柑算盘子是胸高截面积最大的3个落叶树种。在次生演替过程中,落叶物种比例以5年恢复群落中最高,而后随群落演替进程下降;不同径级大小个体的落叶物种比例也表现出相同的变化趋势,且较大径级个体(DBH≥5cm)比例高于小径级个体(DBH〈5cm)。落叶物种个体密度比例和胸高截面积比例呈现单峰曲线变化:在恢复12年的群落中达到最大,而后随群落演替进程下降。除幼树(H〉1.5m,DBH〈5cm)外,其他各径级个体中的落叶物种密度和胸高截面积比例也表现出相同的变化趋势。我们的研究表明,在海南岛热带低地雨林刀耕火种后的次生演替和自然恢复过程中,落叶物种比例及其密度随恢复过程而发生相应的变化,在一定的恢复时期内呈现一定的季雨林群落特征。  相似文献   

20.

Background and Aims

In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.

Methods

Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.

Key Results

In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence.

Conclusions

The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号