首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plant density varies naturally, from isolated plants to clumped individuals, and this can influence pollinator foraging behaviour and plant reproductive success. In addition, the effect of conspecific density on reproduction may depend on the pollination system, and deceptive species differ from rewarding ones in this regard, a high density being often associated with low fruit set in deceptive plants. In our study, we aimed to determine how local conspecific density and floral display size (i.e. number of flowers per plant) affect fruit set in a deceptive orchid (Orchis militaris) through changes in pollinator visitation. We measured fruit set in a natural population and recorded pollinator abundance and foraging behaviour within plots of different O. militaris densities. Detailed data were recorded for the most abundant potential pollinators of O. militaris, i.e. solitary bees. Floral display size was negatively correlated to fruit set in medium‐density plots, but uncorrelated in low‐ and high‐density plots. Plot density had no effect on solitary bee abundance and visitation, which may be due to low pollinator abundance within the study site. The proportion of visited flowers per inflorescence was negatively influenced by floral display size, which is in line with previous studies. In addition, solitary bees spent decreasing time in successive flowers within an inflorescence, and the time spent per flower was negatively affected by ambient temperature. Our results suggest that pollinator behaviour during visitation is poorly linked to pollen deposition and reproductive success in O. militaris.  相似文献   

2.
Bees are considered the most important plant pollinators in many ecosystems, yet little is known about pollination of native plants by bees in many Australian ecosystems including the alpine region. Here we consider bee pollination in this region by constructing a bee visitation network and investigating the degree of specialism and network ‘nestedness’, which are related to the robustness of the network to perturbations. Bees and flowers were collected and observed from 10 sites across the Bogong High Plains/Mt Hotham region in Victoria. Low nestedness and a low degree of specialism were detected, consistent with patterns in other alpine regions. Twenty‐one native and one non‐indigenous bee species were observed visiting 46 of the 67 flower species recorded. The introduced Apis mellifera had a large floral overlap with native bees, which may reduce fecundity of native bees through competition. The introduced plant, Hypochaeris radicata (Asteraceae), had the largest and most sustained coverage of any flower and had the most visitations and bee species of any flower. The network developed in this study is a first step in understanding pollination patterns in the alpine/subalpine region and serves as a baseline for future comparisons.  相似文献   

3.
The alien predatory lizard, Anolis carolinensis, has reduced the insect fauna on the two main islands of the Ogasawara archipelago in Japan. As a result of this disturbance, introduced honeybees are now the dominant visitors to flowers instead of endemic bees on these islands. On the other hand, satellite islands not invaded by alien anoles have retained the native flower visitors. The effects of pollinator change on plant reproduction were surveyed on these contrasting island groups. The total visitation rates and the number of interacting visitor groups on main islands were 63% and 30% lower than that on satellite islands, respectively. On the main islands, the honeybees preferred to visit alien flowers, whereas the dominant endemic bees on satellite islands tended to visit native flowers more frequently than alien flowers. These results suggest that alien anoles destroy the endemic pollination system and caused shift to alien mutualism. On the main islands, the natural fruit set of alien plants was significantly higher than that of native plants. In addition, the natural fruit set was positively correlated with the visitation rate of honeybees. Pollen limitation was observed in 53.3% of endemic species but only 16.7% of alien species. These data suggest that reproduction of alien plants was facilitated by the floral preference of introduced honeybees.  相似文献   

4.
Abstract. 1. The western honeybee, Apis mellifera, has been introduced to many parts of the world and is sometimes purported to be detrimental to native bees because it reduces their food base. It is seldom viewed in this light in Europe; however, when beekeepers maintain very high bee densities, the species could also be displacing insects in its native European range by reducing the resource base. 2. In England, populations of bumblebees (Bombus Latr. Hym.) have been decreasing both in terms of diversity and abundance, mainly because of a loss of habitat resulting from agricultural intensification. The impact of competition from other flower feeders is largely unknown. 3. Nineteen dry lowland heaths in southern England were sampled once for honeybees and bumblebees. Honeybee abundance varied from 4 to 81 bees per 100 m2 (mean = 30.89, median = 23), whereas bumblebees varied from 2 to 17 individuals per 100 m2 (mean = 8.26, median = 7), belonging to between one and five species. There was a negative association between honeybee and bumblebee abundance but there was no apparent relationship between honeybee abundance and bumblebee diversity. 4. The Bray–Curtis coefficient was used to compare the similarity in honeybee and bumblebee floral host breadth at these 19 sites. The coefficient was negatively associated with honeybee abundance: thus where honeybees were most abundant, bumblebees were fewer and/or foraged on different flower species. 5. Foraging host breadth was also examined at four heathlands over a field season (April to September). No association between honeybee abundance and foraging host breadth was found for short‐tongued bees, although there was some evidence for a change in floral host breadth for long‐tongued bees. 6. It is concluded that the impact of honeybees on bumblebees is complex. Although competition between the two species cannot be ruled out, it is perhaps equally likely that bumblebees decline in response to other factors, and that honeybees move independently of this decline.  相似文献   

5.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

6.
Priority effects occur when the order of species arrival affects subsequent ecological processes. The order that pollinator species visit flowers may affect pollination through a priority effect, whereby the first visitor reduces or modifies the contribution of subsequent visits. We observed floral visitation to blueberry flowers from honeybees, stingless bees or a mixture of both species and investigated how (i) initial visits differed in duration to later visits; and (ii) how visit sequences from different pollinator taxa influenced fruit weight. Stingless bees visited blueberry flowers for significantly longer than honeybees and maintained their floral visit duration, irrespective of the number of preceding visits. In contrast, honeybee visit duration declined significantly with an increasing number of preceding visits. Fruit weight was positively associated with longer floral visit duration by honeybees but not from stingless bee or mixed species visitation. Fruit from mixed species visits were heavier overall than single species visits, because of a strong priority effect. An initial visit by a stingless bee fully pollinated the flower, limiting the pollination contribution of future visitors. However, after an initial honeybee visit, flowers were not fully pollinated and additional visitation had an additive effect upon fruit weight. Blueberries from flowers visited first by stingless bees were 60% heavier than those visited first by honeybees when total floral visitation was short (∼1 min). However, when total visitation time was long (∼ 8 min), blueberry fruit were 24% heavier when initial visits were from honeybees. Our findings highlight that the initial floral visit can have a disproportionate effect on pollination outcomes. Considering priority effects alongside traditional measures of pollinator effectiveness will provide a greater mechanistic understanding of how pollinator communities influence plant reproductive success.  相似文献   

7.
The provision of floral resources for the enhancement of beneficial insect populations has shown promise as a strategy to enhance biological control and pollination in agroecosystems. One approach involves the provision of a single flower species while a second involves the multiple flower species, but the two have never been compared experimentally. Here we examine the influence of single and multiple species flower treatments on the abundance and foraging behaviour of key beneficial insects in two agricultural agroecosystems (broccoli and lucerne crops). The five flower treatments comprised buckwheat only, phacelia only, a simple mixture of buckwheat and phacelia, a complex mixture of buckwheat, phacelia and a commercial seed blend or the existing crop as a control. The abundance of bumble‐bees (Bombus hortorum) and honey bees (Apis mellifera) was highest in the three treatments that contained phacelia, while hoverfly (Melanostoma fasciatum) numbers were high in all four flower treatments. Bumble‐bees and honey bees probed almost exclusively phacelia flowers, even when provided with a choice of other flower species in the simple and complex mixture treatments. In contrast, hoverflies probed the flowers of all plant species in single and multiple species treatments, with no apparent difference in acceptance. However, in mixture treatments, the majority of individual bumble‐bees, honey bees and hoverflies probed the flowers from only one species, despite the presence of alternative flower species. Our results illustrate how an appreciation of insect floral attractiveness can be used to customise the species composition of floral patches to potentially maximise biological control and pollination in targeted agroecosystems.  相似文献   

8.
Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations.  相似文献   

9.
Herbivory induces various responses in plants, thus altering the plants’ phenotype in chemical and morphological traits. Herbivore‐induced changes in vegetative plant parts, plant‐physiological mechanisms, and effects on plant‐animal interactions have been intensively studied from species to community level. In contrast, we are just beginning to examine herbivore‐induced effects on reproductive plant parts and flower–visitor interactions, especially in a community context. We investigated the effect of herbivory at different plant developmental stages on plant growth, floral and vegetative phenotype and reproduction in Sinapis arvensis (Brassicaceae). Additionally, we tested how herbivore‐induced plant responses affect flower–visitor interactions and plant reproduction in species‐rich communities. Our results indicate that the timing of herbivory affects the magnitude of changes in plant traits. Herbivory in early but not in late development accelerated the plant's flowering phenology, reduced vegetative growth, increased stem trichome density and altered floral morphology and scent. These findings suggest age‐dependent tradeoffs between growth, defense and reproduction. Herbivore‐induced changes in flower traits also affected flower–visitor interactions in a community context with effects on the structure of flower–visitor networks. However, changes in the network structure had neglectable effects on plant reproduction, i.e. plants were able to compensate altered flower visitor behavior. Thus, herbivory is a source of intraspecific variation in reproductive traits, which can be behaviorally relevant for potential pollinators. However, plants were capable to maintain reproductive success suggesting a tolerance against herbivory. We conclude that in our study system induced direct or indirect defenses that have often been shown to decrease negative effects of herbivores on vegetative plant parts come at no costs for plant reproduction.  相似文献   

10.
Abe T 《Annals of botany》2006,98(2):317-334
Background and Aims Various alien species have been introducedto the Ogasawara Islands (Japan). A survey was made investigatingwhether the native pollination systems fit an ‘islandsyndrome’ (biasing the flora to dioecy, with subdued,inconspicuous flowers) and whether alien species have disruptedthe native pollination network. • Methods Flower visitors and floral traits were determinedin the field (12 islands) and from the literature. Associationsamong floral traits such as sexual expression, flower colourand flower shape were tested. • Key Results Among the 269 native flowering plants, 74·7% are hermaphroditic, 13·0 % are dioecious and 7·1% are monoecious. Classification by flower colour revealed that36·0 % were white, 21·6 % green and 13·8% yellow. Woody species (trees and shrubs) comprised 36·5% of the flora and were associated with dioecy and white flowers.Solitary, endemic small bees were the dominant flower visitorsand visited 66·7 % of the observed species on satelliteislands where the native pollination networks are preserved.In contrast to the situation on the satellite islands, introducedhoneybees were the most dominant pollinator (visiting 60·1% of observed species) on the two main islands, Chichi-jimaand Haha-jima, and had spread to satellite islands near Chichi-jimaIsland. • Conclusions The island syndrome for pollination systemsin the Ogasawara Islands was evident in a high percentage ofdioecious species, the subdued colour of the native flora andsolitary flower visitors on satellite islands. The shape andcolour adaptations of several flowers suggested native pollinationniches for long-proboscis moths and carpenter bees. However,the domination and expansion of introduced honeybees have thepotential for disruption of the native pollination network inthe two main, and several satellite, islands of the OgasawaraIslands.  相似文献   

11.
Much of the literature on foraging behaviour in bees focuses on what they learn after they have had rewarded experience with flowers. This review focuses on how honeybees and bumblebees are drawn to candidate food sources in the first place: the foundation on which learning is built. Prior to rewarded foraging experience, flower-naïve bumblebees and honeybees rely heavily on visual cues to discover their first flower. This review lists methodological issues that surround the study of flower-naïve behaviour and describes technological advances. The role of distinct visual properties of flowers in attracting bees is considered: colour, floral size, patterning and social cues. The research reviewed is multi-disciplinary and takes the perspectives of both the bees and the plants they visit. Several avenues for future research are proposed.  相似文献   

12.
Summary Individual plants in gynodioecious populations ofPhacelia linearis (Hydrophyllaceae) vary in flower gender, flower size, and flower number. This paper reports the effects of variation in floral display on the visitation behaviour of this species' pollinators (mainly pollen-collecting solitary bees) in several natural and three experimental plant populations, and discusses the results in terms of the consequences for plant fitness. The working hypotheses were: (1) that because female plants do not produce pollen, pollen-collecting insects would visit hermaphrodite plants at a higher rate than female plants and would visit more flowers per hermaphrodite than per female; and (2) that pollinator arrival rate would increase with flower size and flower number, the two main components of visual display. These hypotheses were generally supported, but the effects of floral display on pollinator visitation varied substantially among plant populations. Hermaphrodites received significantly higher rates of pollinator arrivals and significantly higher rates of visits to flowers than did females in all experimental populations. Flower size affected arrival rate and flower visit rate positively in natural populations and in two of the three experimental populations. The flower size effect was significant only among female plants in one experimental population, and only among hermaphrodites in another. The effect of flower number on arrival rate was positive and highly significant in natural populations and in all experimental populations. In two out of three experimental populations, insects visited significantly more flowers per hermaphrodite than per female and visited more flowers on many-flowered plants than on few-flowered plants, but neither effect was detected in the third experimental population. Because seed production is not pollen-limited in this species, variation in pollinator visitation behaviour should mainly affect the male reproductive success of hermaphrodite plants. These findings suggest that pollinator-mediated natural selection for floral display inP. linearis varies in space and time.  相似文献   

13.
Effects of perceived danger on flower choice by bees   总被引:7,自引:0,他引:7  
Studies on animal–flower interactions have mostly neglected the third trophic level of pollinators' predators, even though antipredatory behaviour of pollinators may affect patterns of pollinator visitation, pollen transfer and floral traits. In three experiments, it was found that honeybees showed sensitivity to perceived danger at flowers by preferring apparently safe flowers over equally rewarding alternatives harbouring either a dead bee or a spider, and avoiding revisitation of a site where the bees had escaped a simulated predation attempt. These results suggest that bees, like other animals, take antipredatory measures, which may have far reaching effects on animal–flower interactions.  相似文献   

14.
Fruit set is pollen‐limited in the self‐incompatible tree Heterophragma quadriloculare (Bignoniaceae), pollinated by long‐distance flying carpenter bees, and in the self‐compatible shrub Lasiosiphon eriocephalus (Thymdeaceae), pollinated by weak‐flying, sedentary beetles. We studied a single H. quadriloculare population over high and low flowering years and found no difference in bee visitation rates between these years. For H. quadriloculare, neighborhood floral display did not make a significant contribution to reproductive success. We investigated dense and sparse L. eriocephalus populations in the same year. In the low density L. eriocephalus population, individual floral displays were higher than in the dense population, yet reproductive success was low, indicating that plant isolation was a major factor influencing fruit set. This result was due to the extremely low number of beetles per plant and per flower in this population. In the dense L. eriocephalus population, although the displays of individual neighbors were smaller and plants were closer, neighborhood floral display did not contribute significantly to reproductive success, whereas the effect of individual floral display was ambiguous. Species with self‐incompatible rather than self‐compatible breeding systems are expected to experience neighborhood effects on reproductive success; however, at the spatial scale and floral display levels of plants in this study, only individual floral display affected fruit set in H. quadriloculare, whereas neither individual nor neighborhood display influenced fruit set in L. eriocephalus. Therefore, pollinator type, pollinator behavior, and plant and population isolation, rather than breeding system alone, will determine if neighborhood floral display affects fruit set.  相似文献   

15.
Luísa Gigante Carvalheiro  Jacobus Christiaan Biesmeijer  Gita Benadi  Jochen Fründ  Martina Stang  Ignasi Bartomeus  Christopher N. Kaiser‐Bunbury  Mathilde Baude  Sofia I. F. Gomes  Vincent Merckx  Katherine C. R. Baldock  Andrew T. D. Bennett  Ruth Boada  Riccardo Bommarco  Ralph Cartar  Natacha Chacoff  Juliana Dänhardt  Lynn V. Dicks  Carsten F. Dormann  Johan Ekroos  Kate S.E. Henson  Andrea Holzschuh  Robert R. Junker  Martha Lopezaraiza‐Mikel  Jane Memmott  Ana Montero‐Castaño  Isabel L. Nelson  Theodora Petanidou  Eileen F. Power  Maj Rundlöf  Henrik G. Smith  Jane C. Stout  Kehinde Temitope  Teja Tscharntke  Thomas Tscheulin  Montserrat Vilà  William E. Kunin 《Ecology letters》2014,17(11):1389-1399
Co‐flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant–pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non‐native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant–pollination networks.  相似文献   

16.
The balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi-scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio-temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect-pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm-scale experiment (125 ha). We applied an individual-based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio-temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra- and interspecific plant–pollinator interactions respond to spatio-temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co-occurrence of pollinator-mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

17.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

18.
Thelymitra epipactoides has a highly variable visual display achieved through polychromatic flowers and variable inflorescence size, bearing between 7 and 31 flowers, which attract foraging polylectic bees. Only bees of the genusNomia were observed carrying pollinia and successfully pollinating the orchid. The genusNomia contains polylectic, pollen gathering species that store pollen in both the crop and scopa on the hind legs. The absence of a reward for the bees indicates the orchid is relying on deception to attract visitors. The relationship of deception to mimicry is discussed. Once on the flower, tactile, visual and possibly olfactory stimuli direct bees to the false anther formed by the voluminous column wings, where morphological adaptations of the flower ensure that the pollinarium is deposited on the gaster of the bee to effect pollination. — The lack of seed set observed on the Victorian coast appears to be due to the absence of pollinators from the heath and grassland communities in which the orchid grows. This may well be a consequence of the reduced number of plants flowering in the community (a result of the elimination of fire at these sites), thus not maintaining a floral community attractive to potential pollinators.  相似文献   

19.
We studied the reproductive biology of three sympatric Araceae species, Anthurium sagittatum, A. thrinax and Spathiphyllum humboldtii in French Guiana. The plants flowered simultaneously and were visited by scent‐collecting male euglossine bees, which were apparently their major pollinators. In total, each species was visited by 3–7 euglossine species, and 2–3 euglossine species accounted for at least 80% of all flower visits, with visits being plant species‐specific. Floral scent consisted of 6–10 main compounds, which made up 76–94% of the total amount of volatiles and were specific in these high amounts to each plant species. We suggest that the different floral scents lead to clear separation of the main pollinating euglossine species, providing a directed and efficient intraspecific pollen flow that results in high reproductive success. Since the simple floral (inflorescence) morphology of the studied plants does not support any morphological mechanisms to exclude visitors, as for example in euglossine‐pollinated perfume orchids, floral scent might be of major importance for the reproductive isolation and sympatric occurrence of these plants.  相似文献   

20.
1. In insect‐pollinated plants, pollinator attraction is influenced by flowers (e.g. number, size) and their associated rewards (e.g. pollen, nectar). These traits can depend on plant interactions. Indeed, below‐ground competition between plants can lead to a decrease in flower or reward production in insect‐pollinated species. 2. Wind‐pollinated plants, in particular, which are almost never studied in plant–pollinator networks, can alter insect‐pollinated plants' attractiveness through competition for nutrients. The response of pollinators to such changes has never been investigated. 3. A pot experiment was carried out in which an insect‐pollinated species, Echium plantagineum, was grown in binary mixture with three wind‐pollinated species selected to exert a panel of competitive interactions. Below‐ground competition was controlled using dividers limiting interspecific root competition. Floral traits of E. plantagineum (i.e. flower production, floral display size, flower size and nectar production) were measured. For each species mixture, the visits (i.e. first visit, number of visits, 10‐min sequences) of Bombus terrestris individuals released in a flight cage containing two pots were followed, one with and one without below‐ground competition. 4. Below‐ground competition significantly affected nectar's sucrose concentration but did not influence flower and nectar production. Likewise, pollinator visits were not influenced by below‐ground competition. Competitor identity significantly influenced flower and reward production of E. plantagineum, with a decrease in the presence of the most competitive wind‐pollinated species. A tendency for faster flower visitation events was also detected in the presence of the least competitive competitor. This study raises new questions regarding the influence of wind‐pollinated plants on plant–pollinator interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号