首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest‐tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest‐tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest‐tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest‐tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest‐tundra ecotone.  相似文献   

3.
4.
Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth–climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km2) in northeastern Siberia using satellite‐derived normalized difference vegetation indices (NDVI), tree ring‐width measurements, and climate data. Mean summer temperatures (Ts) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy). Mean summer NDVI (NDVIs) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub‐dominated areas. NDVIs positively correlated (P < 0.05) with Ts across 56% of the watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring‐width measurements from nine sites revealed that year‐to‐year (i.e., high‐frequency) variation in growth positively correlated (P < 0.05) with June temperature (= 0.40) and prior summer CMI (r = 0.40) from 1938 to 2007. An unexplained multi‐decadal (i.e., low‐frequency) decline in annual basal area increment (BAI) occurred following the mid‐20th century, but over the NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982–2007). Both satellite and tree‐ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations.  相似文献   

5.
Mycorrhizal associations are widespread in high‐latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16‐year‐old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest‐tundra ecotone. We also used high‐throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree‐days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near‐significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context‐dependent ways in subarctic ecosystems. Considering the importance of root‐associated fungi for ecosystem carbon balance, these findings could have far‐reaching implications.  相似文献   

6.
7.
The forest–steppe ecotone in southern Siberia is highly sensitive to climate change; global warming is expected to push the ecotone northwards, at the same time resulting in degradation of the underlying permafrost. To gain a deeper understanding of long‐term forest–steppe carbon dynamics, we use a highly resolved, multiproxy, palaeolimnological approach, based on sediment records from Lake Baikal. We reconstruct proxies that are relevant to understanding carbon dynamics including carbon mass accumulation rates (CMAR; g C m?2 yr?1) and isotope composition of organic matter (δ13CTOC). Forest–steppe dynamics were reconstructed using pollen, and diatom records provided measures of primary production from near‐ and off‐shore communities. We used a generalized additive model (GAM) to identify significant change points in temporal series, and by applying generalized linear least‐squares regression modelling to components of the multiproxy data, we address (1) What factors influence carbon dynamics during early Holocene warming and late Holocene cooling? (2) How did carbon dynamics respond to abrupt sub‐Milankovitch scale events? and (3) What is the Holocene carbon storage budget for Lake Baikal. CMAR values range between 2.8 and 12.5 g C m?2 yr?1. Peak burial rates (and greatest variability) occurred during the early Holocene, associated with melting permafrost and retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr bp provide compelling evidence for the sensitivity of the region to sub‐Milankovitch drivers of climate change. We estimate that 1.03 Pg C was buried in Lake Baikal sediments during the Holocene, almost one‐quarter of which was buried during the early Holocene alone. Combined, our results highlight the importance of understanding the close linkages between carbon cycling and hydrological processes, not just temperatures, in southern Siberian environments.  相似文献   

8.
Aim The species‐specific response of tree‐line species to climatic forcing is a crucial topic in modelling climate‐driven ecosystem dynamics. In northern Québec, Canada, black spruce (Picea mariana) is the dominant species at the tree line, but white spruce (Picea glauca) also occurs along the maritime coast of Hudson Bay, and is expanding along the coast and on lands that have recently emerged because of isostatic uplift. Here we outline the present distribution, structure, dynamics and recent spread of white spruce from the tree line up to its northernmost position in the shrub tundra along the Hudson Bay coast. We aimed to obtain a minimum date of the arrival of the species in the area and to evaluate its dynamics relative to recent climate changes. Location White spruce populations and individuals were sampled along a latitudinal transect from the tree line to the northernmost individual in the shrub tundra along the Hudson Bay coast and in the Nastapoka archipelago in northern Québec and Nunavut, Canada (56°06′–56°32′ N). Methods White spruce populations were mapped, and the position, dimension, growth form and origin (seed or layering) of every individual recorded. Tree‐ring analyses of living and dead trees allowed an estimation of the population structure, past recruitment, growth trends and growth rate of the species. A macrofossil analysis was performed of the organic horizon of the northernmost white spruce stands and individuals. Radiocarbon dates of white spruce remains and organic matter were obtained. The rate of isostatic uplift was assessed by radiocarbon dating of drifted wood fragments. Results The first recorded establishment of white spruce was almost synchronous at all sites and occurred around ad 1660. Spruce recruitment was rather continuous at the tree line, while it showed a gap in the northern shrub tundra during the first decades of the 19th century. A vigorous, recent establishment of seedlings was observed in the shrub tundra; only wind‐exposed, low krummholz (stunted individuals) did not show any sexual regeneration. A period of suppressed growth occurred from the 1810s to the 1850s in most sites. A growth increase was evident from the second half of the 19th century and peaked in the 1880s and the 20th century. A shift from stunted to tree growth form has occurred since the mid‐19th century. No sample associated with white spruce remains gave a date older than 300 14C years bp [calibrated age (cal.) ad 1430–1690]. Main conclusions White spruce probably arrived recently in the coastal tundra of Hudson Bay due to a delayed post‐glacial spread. The arrival of the species probably occurred during the Little Ice Age. The established individuals survived by layering during unfavourable periods, but acted as nuclei for sexual recruitment almost continuously, except in the northernmost and most exposed sites. Warmer periods were marked by strong seedling recruitment and a shift to tree growth form. Unlike white spruce, black spruce showed no evidence of an ongoing change in growth form and sexual recruitment. Ecological requirements and recent history of tree‐line species should be taken into account in order to understand the present dynamics of high‐latitude ecosystems.  相似文献   

9.
Tongue and diaphragm samples from 158 black bears (Ursus americanus) from Newfoundland and Labrador were examined for Trichinella spiralis. No larvae were detected in samples from the island of Newfoundland but one animal from the Labrador samples was infected. The results of this and other studies suggest a lack of involvement of the black bear in a sylvatic cycle of T. spiralis in eastern Canada.  相似文献   

10.
11.
Abstract. Repeated crown condition surveys, 1974–94, of subalpine clonal groups of Norway spruce ( Picea abies (L.) Karst.) were carried out in the Swedish Scandes. Complementary analyses concerned radial and vertical growth, sexual regeneration and range limit responses of other plant species. Significant defoliation of spruce progressed linearly over the period of study, reaching cumulative values of about 85%. It is inferred that defoliation was preconditioned by decreasing radial growth since the thermal climax in 1937 and was proximately initiated by the extremely cold winter of 1965/66 and paralleled by consistently declining radial growth and staggering vertical increase. It appears that severe and prolonged ground freezing invoked winter desiccation (xylem cavitation), extensive needle loss and reduced radial growth. Hypothetically, from circumstantial evidence, these processes are interrelated in a positive feedback system, implying increasing sensitivity to climatic stress and decreasing ability to take advantage of positive climatic anomalies. Thus, the total demise of the supranival stems is cautiously predicted, by linear regression of the 20-yr defoliation pattern, to be less than a decade ahead. The recession of P. abies , clearly relevant in a landscape perspective, conforms with analogous responses of Pinus sylvestris L. and Betula pubescens Ehrh. ssp. tortuosa (Ledeb.) Nyman and a significant altitudinal range-limit retraction of certain silvine field-layer species. The structural development examined in this study concurs with long-term climate cooling and cold events and strongly contrasts with simulations of the performance of this system in response to a putative enhanced'greenhouse'effect.  相似文献   

12.
Premise of the study: In ecosystems where seed production is low and masting years are sporadic, or with species that have short-lived seeds, regeneration is assured by seedling banks rather than seed banks. Seedling establishment and survival play a critical role in determining the composition of these plant communities by supplying new individuals for their maintenance. Seedling emergence and mortality were investigated to test the hypothesis that recruitment into the seedling bank is periodic. • Materials and methods: Seed production and seedling emergence and survival was monitored during 1994-2007 in balsam fir (Abies balsamea) and white spruce (Picea glauca) in four pristine stands of the boreal forest of Quebec, Canada. Measurements were collected twice per month by sampling one permanent plot of 20 × 20 m per stand. • Key results: Seed-rain abundance reached 9 × 103 seeds m−2 year−1, and was characterized by synchronous sequences of low and high seed production. New seedlings appeared only during the year following a seed production of at least 1 × 103 and 1.5 × 102 seeds m−2 year−1 for balsam fir and white spruce, respectively. Seedlings emerged in July and survived 34-52 d on average, with balsam fir showing a longer lifespan and lower mortality, although 85–99% of seedlings died before completing one year of life. • Conclusions: The emergence of young seedlings was coupled with massive seed rains, which allowed synchronous replenishment of the seedling banks among stands and species, and generated different cohorts, yielding a discontinuous age structure.  相似文献   

13.
Successful forest expansion into grassland can be limited by seed dispersal and adverse conditions for tree seedlings in the grassland environment. In the high‐elevation Andes, human‐induced fragmentation has exacerbated the patchy distribution of Polylepis forests, threatening their unique biological communities and spurring restoration interest. Studies of Polylepis forest extent in Peru suggest that forest borders have remained stable over the past century despite decreasing anthropogenic disturbance, suggesting that tree seedling recruitment is being limited in the open grassland habitat. We studied natural seedling dispersion patterns of Polylepis sericea and Polylepis weberbaueri (Rosaceae) at forest–grassland edges across a range of environmental conditions to examine seedling recruitment and colonization of grasslands in Huascaran National Park (Peru). Using data from 2367 seedlings found in 48 forest–grassland edge plots (15 m × 15 m) at forest patches between 3900–4500 masl, we employed generalized mixed modelling to identify the significant associations of seedling densities with environmental covariates. In addition, we compared these associations to patterns of adult presence on the landscape. Seedling densities were associated with a combination of variables varying within (distance to forest edge) and among (elevation and dry season solar irradiation) plots across the landscape. For both species, seedling densities decreased with increasing distance away from the forest in a manner consistent with short‐distance seed dispersal by wind. Our results suggest that such short‐distance dispersal may slow forest expansion, but that there also appear to be substantial post‐dispersal limitations to seedling establishment in the grassland. Polylepis sericea densities decreased with elevation, while P. weberbaueri increased with elevation and decreased with solar irradiation. Associations of adult presence with elevation and solar irradiation mirrored those of seedling densities. Management of areas with forest patches dominated by these species should consider these differences in their environmental tolerances, particularly during species selection and zonation for reforestation.  相似文献   

14.
In order to clarify the role of micro-organisms in the carbon cycle of the boreal forest ecosystem, the vertical distribution of soil carbon, soil microbial biomass and respiratory activity was studied in a black spruce forest near Candle Lake in Saskatchewan, Canada. The total amount of carbon contained in moss and soil layers (to the depth of 50cm beneath the mineral soil surface) was 7.2kgm–2, about 47% of which was in the L and FH horizons of the soil. Soil microbial biomass per dry weight of soil was largest in the L horizon, while the biomass per ground area was largest in the FH horizon. Soil respiration rate, measured using a portable infrared gas analyzer, was highest in the FH horizon, exceeding 50% of the total soil respiration. Low but significant CO2 emission was detected even in deeper soil horizon (E horizon). We also examined the respiration rate of cut roots and the effect of root excision on respiration. The contribution of root respiration to total soil respiration, calculated from root biomass and respiration rate of cut roots, was about 54%. The amount of carbon evolved through microbial respiration during the snow-free season (June–October) was estimated as 221gCm–2. Micro-organisms in the L horizon showed high respiratory activity as compared with those in deeper soil horizons.  相似文献   

15.
Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method‐specific composition and storage of BC, i.e. BPCA‐BC, in a 0.44 km2‐sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA‐BC export with the stream draining the catchment. The catchment is composed of various landscape units with south‐southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north‐northeast (NNE) faced mineral soils with thin active layer, and permafrost‐affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA‐BC amounted to 0.6–3.0% of OC. This corresponded to a BC storage of 22–3440 g m?2. The relative contribution of BPCA‐BC to OC, as well as the absolute stocks of BPCA‐BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA‐BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA‐BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA‐BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA‐BC m?2 was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean.  相似文献   

16.
17.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   

18.
In Low Arctic tundra, thermal erosion of ice‐rich permafrost soils (thermokarst) has increased in frequency since the 1980s. Retrogressive thaw slumps (RTS) are thermokarst disturbances forming large open depressions on hillslopes through soil wasting and vegetation displacement. Tall (>0.5 m) deciduous shrubs have been observed in RTS a decade after disturbance. RTS may provide conditions suitable for seedling recruitment, which may contribute to Arctic shrub expansion. We quantified in situ seedling abundance, and size and viability of soil seedbanks in greenhouse trials for two RTS chronosequences near lakes on Alaska's North Slope. We hypothesized recent RTS provide microsites for greater recruitment than mature RTS or undisturbed tundra. We also hypothesized soil seedbanks demonstrate quantity–quality trade‐offs; younger seedbanks contain smaller numbers of mostly viable seed that decrease in viability as seed accumulates over time. We found five times as many seedlings in younger RTS as in older RTS, including birch and willow, and no seedlings in undisturbed tundra. Higher seedling counts were associated with bare soil, warmer soils, higher soil available nitrogen, and less plant cover. Seedbank viability was unrelated to size. Older seedbanks were larger at one chronosequence, with no difference in percent germination. At the other chronosequence, germination was lower from older seedbanks but seedbank size was not different. Seedbank germination was positively associated with in situ seedling abundance at one RTS chronosequence, suggesting postdisturbance revegetation from seedbanks. Thermal erosion may be important for recruitment in tundra by providing bare microsites that are warmer, more nutrient‐rich, and less vegetated than in undisturbed ground. Differences between two chronosequences in seedbank size, viability, and species composition suggest disturbance interacts with local conditions to form seedbanks. RTS may act as seedling nurseries to benefit many Arctic species as climate changes, particularly those that do not produce persistent seed.  相似文献   

19.
20.
Tissue samples and feces were collected from a dead, adult female coyote (Canis latrans) found at the side of the road in late March 2003 in the Avalon Peninsula region of Newfoundland, Canada. The coyote apparently died of vehicular-related trauma. Samples of lung, brain, heart, liver, and kidney were fixed in formalin and submitted for histologic examination. The entire remaining lung and heart also were submitted for examination. The coyote was diagnosed with moderate, multifocal, granulomatous interstitial pneumonia with eosinophilic vasculitis and many intralesional nematode eggs, larvae, and occasional intravascular adult worms. Adult nematodes recovered from the pulmonary arteries were identified as Angiostrongylus vasorum. Small foci of granulomatous inflammation, often containing nematode eggs and larvae, were scattered in the brain and kidney. To our knowledge, this is the first report of A. vasorum infection in a coyote from the only endemic area of infection in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号