首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When exotic plant species share pollinators with native species, competition for pollination may lower the reproductive success of natives by reducing the frequency and/or quality of visits they receive. Exotic species often become numerically dominant in plant communities, and the relative abundance of these potential competitors for pollination may be an important determinant of their effects on the pollination and reproductive success of co-occurring native species. Our study experimentally tests whether the presence and abundance of an invasive exotic, Lythrum salicaria L. (Lythraceae), influences reproductive success of a co-flowering native species, Mimulus ringens L. (Phrymaceae). We also examine the mechanisms of competition for pollination and how they may be altered by changes in competitor abundance. We found that the presence of Lythrum salicaria lowered mean seed number in Mimulus ringens fruits. This effect was most pronounced when the invasive competitor was highly abundant, decreasing the number of seeds per fruit by 40% in 2006 and 33% in 2007. Reductions in the number of seeds per fruit were likely due to reduced visit quality resulting from Mimulus pollen loss when bees foraged on neighboring Lythrum plants. This study suggests that visit quality to natives may be influenced by the presence and abundance of invasive flowering plants.  相似文献   

2.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens.  相似文献   

3.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

4.
Plant–plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination‐driven competition. We focused on two native Impatiens species (I. noli‐tangere and I. textori) found in Japan and examined whether pollinator‐mediated plant competition occurs between them. We demonstrate that I. noli‐tangere and I. textori share the same pollination niche (i.e., flowering season, pollinator fauna, and position of pollen on the pollinator's body). In addition, heterospecific pollen grains were deposited on most stigmas of both I. noli‐tangere and I. textori flowers that were situated within 2 m of flowers of the other species resulting in depressed fruit set. Further, by hand‐pollination experiments, we show that when as few as 10% of the pollen grains are heterospecific, fruit set is decreased to less than half in both species. These results show that intensive pollinator‐mediated competition occurs between I. noli‐tangere and I. textori. This study suggests that intensive pollinator‐mediated competition occurs in the wild even when interacting species are both native and not invasive.  相似文献   

5.
Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.  相似文献   

6.
Plant invasions disrupt native plant reproduction directly via competition for light and other resources and indirectly via competition for pollination. Furthermore, shading by an invasive plant may reduce pollinator visitation and therefore reproduction in native plants. Our study quantifies and identifies mechanisms of these direct and indirect effects of an invasive shrub on pollination and reproductive success of a native herb. We measured pollinator visitation rate, pollen deposition, and female reproductive success in potted arrays of native Geranium maculatum in deciduous forest plots invaded by the non-native shrub Lonicera maackii and in two removal treatments: removal of aboveground L. maackii biomass and removal of flowers. We compared fruit and seed production between open-pollinated and pollen-supplemented plants to test for pollen and light limitation of reproduction. Plots with L. maackii had significantly lower light, pollinator visitation rate, and conspecific pollen deposition to G. maculatum than biomass removal plots. Lonicera maackii flower removal did not increase pollinator visitation or pollen deposition compared to unmanipulated invaded plots, refuting the hypothesis of competition for pollinators. Thus, pollinator-mediated impacts of invasive plants are not limited to periods of co-flowering or pollinator sharing between potential competitors. Geranium maculatum plants produced significantly fewer seeds in plots containing L. maackii than in plant removal plots. Seed set was similar between pollen-supplemented and open-pollinated plants, but pollen-supplemented plants exhibited higher seed set in plant removal plots compared to invaded plots. Therefore, we conclude that the mechanism of impact of L. maackii on G. maculatum reproduction was increased understory shade.  相似文献   

7.
Many species of the sexually deceptive genus Ophrys are characterized by insect‐like flowers. Their form has been traditionally considered to play an important role in pollinator attraction and manipulation. Yet, the evolution of the floral form remains insufficiently understood. We hypothesize that pollinator‐mediated selection is essential for driving floral form evolution in Ophrys, but that form components are being subjected to varying selection pressures depending on their role in mediating interactions with pollinators. By using the Eucera‐pollinated Ophrys leochroma as a model, our aim has been to assess whether and in what manner pollination effectiveness is altered by experimental manipulation of the flower form. Our results show that floral form plays an essential and, so far, underestimated role in ensuring effective pollination by mechanically guiding pollinators towards the reproductive structures of the flower. Pollinators are significantly less effective in interacting with flowers having forms altered to resemble those of species pollinated by different hymenopteran genera. Further, those components used by pollinators as gripping points were found to be more effective in ensuring pollinia transfer than those with which pollinators do not directly interact. Thus, mechanically active and inactive components appear to be under different selection pressures. As a consequence, mechanically active components of the flower form could reflect adaptations to the interaction with particular pollinator groups, whereas mechanically inactive components can vary more freely. Disentangling selection patterns between the functionally different components of flower form may provide valuable insights into the mechanisms driving the morphological diversification of sexually deceptive pollination systems.  相似文献   

8.
As one of the most specialized pollination syndromes, the fig (Ficus)–fig wasp (Agaonidae) mutualism can shed light on how pollinator behaviour and specificity affect plant diversification through processes such as reproductive isolation and hybridization. Pollinator sharing among species has important implications for Ficus species delimitation and the evolutionary history of the mutualism. Although agaonid wasp pollinators are known to visit more than one host species in monoecious figs, pollinator sharing has yet to be documented in dioecious figs. The present study investigated the frequency of pollinator sharing among sympatric, closely‐related dioecious figs in Ficus sections Sycocarpus and Sycidium. Molecular and morphological species identification established the associations between pollinating agaonid wasp species and host fig species. Cytochrome oxidase I was sequenced from 372 Ceratosolen pollinators of Ficus section Sycocarpus and 210 Kradibia pollinators of Ficus section Sycidium. The association between fig species and morphologically distinct clades of pollinator haplotypes was predominantly one‐to‐one. In Ceratosolen, six of 372 pollinators (1.5%) visited fig species other than the predominant host. No pollinator sharing was detected between the two Sycidium host species, although a rare hybrid shared Kradibia pollinators with both parental species. These findings point to low rates of pollinator sharing among closely‐related dioecious fig species in sympatry, and perhaps lower rates than among monoecious figs. Such rare events could be evolutionarily important as mechanisms for gene flow among fig species. Differences in rates of pollinator sharing among fig lineages might explain the conflicting phylogenetic patterns inferred among monoecious figs, dioecious figs, and their respective pollinators. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 546–558.  相似文献   

9.
Investigating plant–pollinator interactions and pollen dispersal are particularly relevant for understanding processes ensuring long‐term viability of fragmented plant populations. Pollen dispersal patterns may vary strongly, even between similar congeneric species, depending on the mating system, pollinator assemblages and floral traits. We investigated pollen dispersal and fruit production in a population of Vaccinium oxycoccos, an insect‐pollinated shrub, and compared the pollen dispersal pattern with a co‐flowering, sympatric congener, V. uliginosum. We examined whether they share pollinators (through interspecific fluorescent dye transfers) and may differently attract pollinators, by comparing their floral colour as perceived by insects. Fluorescent dyes were mainly dispersed over short distances (80% within 40.4 m (max. 94.5 m) for V. oxycoccos and 3.0 m (max. 141.3 m) for V. uliginosum). Dye dispersal in V. oxycoccos was not significantly affected by plant area, floral display or the proximity to V. uliginosum plants. Interspecific dye transfers were observed, indicating pollinator sharing. The significantly lower dye deposition on V. oxycoccos stigmas suggests lower visitation rates by pollinators, despite higher flower density and local abundance. The spectral reflectance analysis indicates that bees are unlikely to be able to discriminate between the two species based on floral colour alone. Fruit production increased with increasing floral display, but was not affected by proximity to V. uliginosum plants. Our study highlights that fragmented populations of V. oxycoccos, when sympatric with co‐flowering V. uliginosum, might incur increased competition for the shared pollinators in the case of pollination disruption, which might then reduce outcrossed seed set.  相似文献   

10.
1. Mutualisms are relationships of mutual exploitation, in which interacting species receive a net benefit from their association. In obligate pollination mutualisms (OPMs), female pollinators move pollen between the flowers of a single plant species and oviposit eggs within the female flowers that they visit. 2. Competition between co‐occurring pollinator species is predicted to increase pollinator virulence, i.e. laying more eggs or consuming more seeds per fruit. Plants involved in OPMs frequently host various non‐pollinating seed parasites and parasitoids that may influence the outcome of the mutualism. Quantifying the prevalence of parasites and parasitoids and competition between pollinators is important for understanding the factors that influence OPM evolutionary stability. 3. This study investigated the pollination mutualism occurring between the leaf flower plant, Breynia oblongifolia, and its co‐pollinating Epicephala moths. A third moth, Herpystis, also occurs in B. oblongifolia fruits as a non‐pollinating seed parasite. 4. Breynia oblongifolia fruits were collected to quantify seed predation and compare seed predation costs between the three moth species. Results showed that the larvae of the two pollinator species consume similar numbers of seeds, and that adults deposit similar numbers of eggs per flower. As such, no evidence of increases in virulent behaviours was detected as a result of competition between co‐pollinators. 5. By contrast, the seed parasite Herpystis consumed more seeds than either pollinator species, and fruit crops with a high proportion of Herpystis had significantly lower net seed production. 6. This work adds to the growing understanding of the ecology and dynamics of plant–pollinator mutualisms.  相似文献   

11.
A plant species immigrating into a community may experience a rarity disadvantage due to competition for the services of pollinators. These negative reproductive interactions have the potential to lead to competitive displacement or exclusion of a species from a site. In this study, we used one‐ and two‐species arrays of potted plants to test for density and frequency dependence in pollinator‐mediated and above‐ground intraspecific and interspecific competition between two species of Limnanthes that have overlapping ranges, but rarely occur in close sympatry. There were asymmetric competitive effects; the species responded differently to their frequency within 16‐plant replacement series arrays. Limnanthes douglasii rosea experienced stronger reductions in lifetime and per‐flower fertility, likely due to pollinator‐mediated competition with Limnanthes alba. This effect may be linked to asymmetrical competition through heterospecific pollen transfer. This study demonstrates that pollinator‐mediated competition may discourage establishment of L. d. rosea in sites already occupied by its congener.  相似文献   

12.
Reproductive biology and plant fertility are directly related to many aspects of plant evolution and conservation biology. Vriesea friburgensis is an epiphytic and terrestrial bromeliad endemic to the Brazilian Atlantic rainforest. Hand‐pollination experiments were used to examine the reproductive system in a wild population of V. friburgensis. Plant fertility was assigned considering flower production, fruit and seed set, seed germination, and pollen viability. Self‐sterility observed from spontaneous selfing and manual self‐pollination treatments may be the consequence of late‐acting self‐incompatibility. Hand‐pollination results indicated no pollen limitation in the population studied. Floral biology features such as a few daily open flowers, nectar production, and sugar concentration corroborate hummingbirds as effective pollinators, although bees were also documented as pollinators. Components of fitness such as high flower, fruit, and seed production together with high seed and pollen viability indicate that this wild population is viable. From a conservation point of view, we highlight that this self‐sterile species depends on pollinator services to maintain its population fitness and viability through cross‐pollination. Currently, pollinators are not limited in this population of V. friburgensis. Conversely, the maintenance and continuous conservation of this community is essential for preserving this plant–pollinator mutualism.  相似文献   

13.
Decreases in pollinator abundance may particularly constrain plants that lack floral rewards, since they are poor competitors for pollinators in the plant community. Here, we documented the pollination ecology of a rewardless orchid, Calanthe reflexa Maxim., and examined effects of forest understory degradation by deer browsing on pollination success of the species in the light of a change in the abundance of neighboring flowering plants in 2010 and 2011. Bombus species were the only pollinators at each site and the flowering phenology of C. reflexa did not overlap with that of other rewarding plants. Pollinator visit rates (assessed by time‐lapse photography), and pollinia removal rate were higher in the undegraded understory site than the degraded site in both years, while the fruit set ratio did not differ between the sites in 2011. Coverage by neighboring flowering plants was extremely low in the degraded site. Our results suggest that, although its flowering phenology and consequently lower interspecific competition of C. reflexa with rewarding plants for attracting bumblebees, neighboring flowering plants may play an important role for maintaining the visitation frequency of bumblebees of C. reflexa and contribute to its pollination success.  相似文献   

14.
Many modern crop varieties rely on animal pollination to set fruit and seeds. Intensive crop plantations usually do not provide suitable habitats for pollinators so crop yield may depend on the surrounding vegetation to maintain pollination services. However, little is known about the effect of pollinator‐mediated interactions among co‐flowering plants on crop yield or the underlying mechanisms. Plant reproductive success is complex, involving several pre‐ and post‐pollination events; however, the current literature has mainly focused on pre‐pollination events in natural plant communities. We assessed pollinator sharing and the contribution to pollinator diet in a community of wild and cultivated plants that co‐flower with a focal papaya plantation. In addition, we assessed heterospecific pollen transfer to the stigmatic loads of papaya and its effect on fruit and seed production. We found that papaya shared at least one pollinator species with the majority of the co‐flowering plants. Despite this, heterospecific pollen transfer in cultivated papaya was low in open‐pollinated flowers. Hand‐pollination experiments suggest that heterospecific pollen transfer has no negative effect on fruit production or weight, but does reduce seed production. These results suggest that co‐flowering plants offer valuable floral resources to pollinators that are shared with cultivated papaya with little or no cost in terms of heterospecific pollen transfer. Although HP reduced seed production, a reduced number of seeds per se are not negative, given that from an agronomic perspective the number of seeds does not affect the monetary value of the papaya fruit.  相似文献   

15.
Geographic variation in the reproductive traits of animal‐pollinated plants can be shaped by spatially variable selection imposed by differences in the local pollination environment. We investigated this process in Babiana ringens (Iridaceae), an enigmatic species from the Western Cape region of South Africa. B. ringens has evolved a specialized perch facilitating cross‐pollination by sunbirds and displays striking geographic variation in perch size and floral traits. Here, we investigate whether this variation can be explained by geographic differences in the pollinator communities. We measured floral and inflorescence traits, and abiotic variables (N, P, C, and rainfall) and made observations of sunbirds in populations spanning the range of B. ringens. In each population, we recorded sunbird species identity and measured visitation rates, interfloral pollen transfer, and whether the seed set of flowers was pollen limited. To evaluate whether competition from co‐occurring sunbird‐pollinated species might reduce visitation, we quantified nectar rewards in B. ringens and of other co‐flowering bird‐pollinated species in local communities in which populations occurred. Variation in abiotic variables was not associated with geographical variation of traits in B. ringens. Malachite sunbirds were the dominant visitor (97% of visits) and populations with larger‐sized traits exhibited higher visitation rates, more between‐flower pollen transfer and set more seed. No sunbirds were observed in four populations, all with smaller‐sized traits. Sunbird visitation to B. ringens was not associated with local sunbird activity in communities, but sunbird visitation was negatively associated with the amount of B. ringens sugar relative to the availability of alternative nectar sources. Our study provides evidence that B. ringens populations with larger floral traits are visited more frequently by sunbirds, and we propose that visitation rates to B. ringens may be influenced, in part, by competition with other sunbird‐pollinated species.  相似文献   

16.
Stenocereus quevedonis (‘pitire’) is a columnar cactus endemic to central Mexico, grown for its edible fruit. Phenology, pollination biology and behaviour of flower visitors of this species were compared in six conserved and disturbed sites, hypothesising that: (i) pitire pollination is self‐incompatible, requiring animal vectors; (ii) higher incidence of radiation on plants in cleared forest may lead to a higher number of flowers per pitire plant and longer blooming season, and disturbing and differential spatial availability of flower resources may determine differential attraction of pollinators to conserved and disturbed areas; (iii) if pitire pollination system is specialised, reproductive success would decrease with pollinator scarcity, or other species may substitute for main pollinators. In all sites, pitire reproduction started in January, flowering peak occurring in April, anthesis duration was 15 h and predominantly nocturnal (9 h), pollen was released at 23:00 h, nectar was produced throughout anthesis, and breeding system was self‐incompatible. Flower production per plant was similar in disturbed and conserved sites, but flower availability was higher (because of higher tree density) and longer in disturbed sites. Pollination is nocturnal, the most frequent legitimate pollinator being the bat Leptonycteris yerbabuenae; diurnal pollination is rare but possible, carried out by bee species. Fruit and seed set in control and nocturnal pollination treatments at disturbed sites were higher than in conserved sites. Frequency of L. yerbabuenae visits was similar among site types, but more visits of complementary nocturnal and diurnal pollinators were recorded in disturbed sites, which could explain differences in reproductive success.  相似文献   

17.
Multiple factors determine plant reproductive success and their influence may vary spatially. This study addresses several factors influencing female reproductive success in three populations of Ruellia nudiflora, specifically we: (i) determine if fruit set is pollen‐limited and if pollinator visitation rates are related to this condition; (ii) estimate fruit set via autonomous self‐pollination (AS) and relate it to the magnitude of herkogamy; and (iii) evaluate if fruit abortion is a post‐pollination mechanism that determines the magnitude of pollen limitation. At each site we marked 35 plants, grouped as: unmanipulated control (C) plants subjected to open pollination, plants manually cross‐pollinated (MP), and plants excluded from pollinators and only able to self‐pollinate autonomously (AS). Fruit set was greater for MP relative to C plants providing evidence for pollen limitation, while a tendency was observed for lower fruit abortion of MP relative to C plants suggesting that fruit set is influenced not only by pollen delivery per se, but also by subsequent abortion. In addition, although pollinator visits varied significantly among populations, the magnitude of pollen limitation did not, suggesting that pollinator activity was not relevant in determining pollen limitation. Finally, fruit set tended to decrease with the degree of herkogamy for AS plants, but this result was inconclusive. These findings have contributed to identify which factors influence reproductive success in populations of R. nudiflora, with potentially relevant implications for population genetic structure and mating system evolution of this species.  相似文献   

18.
The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra‐ and inter‐annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra‐plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large‐sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross‐pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects.  相似文献   

19.
Pollination systems may vary in their degree of specialization from generalist to specialist and this is associated with the frequency and efficiency of pollinators. Self‐compatibility and a generalist pollination system appear to be adaptations that enhance the ability for colonizing new areas, which is typical of mangrove species. Avicennia schaueriana is a western mangrove species included in Acanthaceae, Lamiales, an order known to have specialized pollination. We aimed to describe the floral morphology and analyze the pollination and reproductive systems of A. schaueriana in a mangrove area on the northern coast of the state of Pernambuco, Brazil, to analyze the possible adaptations of this species to the environment. Avicennia schaueriana is self‐compatible; however, pollination activity is essential because there is no spontaneous formation of fruit. Reproductive efficacy was high, indicating pollinator efficiency. Some floral attributes of A. schaueriana suggest specialization; however, the broad spectrum of pollinators observed suggests that it has a generalist pollination system. The way in which pollinators interact with flowers and the environmental conditions may have exerted a selective force on the floral attributes of A. schaueriana, characterizing an adaptive generalized pollination system, which is somewhat specialized.  相似文献   

20.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号