首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt, when all feathers are replaced. Recent evidence indicating that CORT implants slow the rate of feather regrowth in molting birds suggests that plasma CORT concentrations are downregulated during molt in order to avoid the inhibition of feather growth caused by the protein catabolic activity of CORT. To further test this hypothesis, we examined whether endogenous CORT release, stimulated by exposure to either psychological stress or physical stress (food restriction), could inhibit feather regrowth rates or decrease feather quality in birds undergoing an induced molt (feather replacement after plucking). European starlings (Sturnus vulgaris) were exposed to chronic psychological stress or food restriction for three weeks of the feather regrowth period. Throughout this time, the length of growing primary, secondary, and tail feathers was measured and blood samples were collected to measure baseline and stress-induced CORT concentrations. Upon completion of growth, feather quality was analyzed via measurements of mass, rachis length, feather area, and presence of fault bars. Both psychological and physical stress protocols elevated circulating plasma CORT but significantly less than implants from an earlier study did. Psychological stress had no effect on feather regrowth rates or feather quality. Food restriction had no effect on feather growth rate but caused asynchronous feather replacement. When combined with psychological stress, physical stress also resulted in smaller feather area. Results indicate that CORT implants may not accurately represent chronic stress physiology. Additionally, the purpose for downregulating CORT concentrations during molt appears to be more complicated than simply protecting feather production from CORT's catabolic effects.  相似文献   

2.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt, when all feathers are replaced. Recent evidence indicating that CORT implants slow the rate of feather regrowth in molting birds suggests that plasma CORT concentrations are downregulated during molt in order to avoid the inhibition of feather growth caused by the protein catabolic activity of CORT. To further test this hypothesis, we examined whether endogenous CORT release, stimulated by exposure to either psychological stress or physical stress (food restriction), could inhibit feather regrowth rates or decrease feather quality in birds undergoing an induced molt (feather replacement after plucking). European starlings (Sturnus vulgaris) were exposed to chronic psychological stress or food restriction for three weeks of the feather regrowth period. Throughout this time, the length of growing primary, secondary, and tail feathers was measured and blood samples were collected to measure baseline and stress-induced CORT concentrations. Upon completion of growth, feather quality was analyzed via measurements of mass, rachis length, feather area, and presence of fault bars. Both psychological and physical stress protocols elevated circulating plasma CORT but significantly less than implants from an earlier study did. Psychological stress had no effect on feather regrowth rates or feather quality. Food restriction had no effect on feather growth rate but caused asynchronous feather replacement. When combined with psychological stress, physical stress also resulted in smaller feather area. Results indicate that CORT implants may not accurately represent chronic stress physiology. Additionally, the purpose for downregulating CORT concentrations during molt appears to be more complicated than simply protecting feather production from CORT's catabolic effects.  相似文献   

3.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt when all feathers are replaced. To explain why, we proposed that the birds downregulate natural CORT release during molt in order to avoid CORT's degradative effects on proteins and its inhibition of protein synthesis. If CORT exerted these effects during molt, it could slow protein deposition during feather production and potentially result in a longer period of degraded flight performance. To test this hypothesis, either empty or CORT-filled silastic implants were inserted into captive European starlings (Sturnus vulgaris) and white-crowned sparrows (Zonotrichia leucophrys) undergoing induced (feather replacement after plucking) and natural molts. We then measured the rate of feather re-growth by regularly measuring the length of primary, secondary, and tail feathers. CORT implanted birds showed a significantly decreased rate of feather growth compared to control animals. Basal CORT concentrations of induced molt and non-molting birds were also compared but no difference was noted. The results suggest a tradeoff; a complete set of new feathers may be more important to the survival of a bird than the ability of CORT to respond maximally to a stressor.  相似文献   

4.
Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long‐term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.  相似文献   

5.
The effects of environmental perturbations or stressors on individual states can be carried over to subsequent life stages and ultimately affect survival and reproduction. The concentration of corticosterone (CORT) in feathers is an integrated measure of hypothalamic–pituitary–adrenal activity during the molting period, providing information on the total baseline and stress-induced CORT secreted during the period of feather growth. Common eiders and greater snow geese replace all flight feathers once a year during the pre-basic molt, which occurs following breeding. Thus, CORT contained in feathers of pre-breeding individuals sampled in spring reflects the total CORT secreted during the previous molting event, which may provide insight into the magnitude or extent of stress experienced during this time period. We used data from multiple recaptures to disentangle the contribution of individual quality vs. external factors (i.e., breeding investment or environmental conditions) on feather CORT in arctic-nesting waterfowl. Our results revealed no repeatability of feather CORT within individuals of either species. In common eiders, feather CORT was not affected by prior reproductive investment, nor by pre-breeding (spring) body condition prior to the molting period. Individual feather CORT greatly varied according to the year, and August-September temperatures explained most of the annual variation in feather CORT. Understanding mechanisms that affect energetic costs and stress responses during molting will require further studies either using long-term data or experiments. Although our study period encompassed only five years, it nonetheless provides evidence that CORT measured in feathers likely reflects responses to environmental conditions experienced by birds during molt, and could be used as a metric to study carry-over effects.  相似文献   

6.
Feather corticosterone (CORT) levels are increasingly employed as biomarkers of environmental stress. However, it is unclear if feather CORT levels reflect stress and/or workload in the wild. We investigated whether feather CORT represents a biomarker of environmental stress and reproductive effort in tree swallows (Tachycineta bicolor). Specifically, we examined whether individual state and investment during reproduction could predict feather CORT levels in subsequently moulted feathers and whether those levels could predict future survival and reproductive success. Through a manipulation of flight cost during breeding, we also investigated whether an increase in stress level would be reflected in subsequently grown feathers, and whether those levels could predict future success. We found that CORT levels of feathers grown during moult did not (1) reflect past breeding experience (n = 29), (2) predict reproductive output (n = 18), or (3) respond to a manipulation of flight effort during reproduction (10 experimental, 14 control females). While higher feather CORT levels predicted higher return rate (a proxy for survival), they did so only in the manipulated group (n = 36), and this relationship was opposite to expected. Overall, our results add to the mixed literature reporting that feather CORT levels can be positively, negatively, or not related to proxies of within-season and longer-term fitness (i.e., carryover effects). In addition, our results indicate that CORT levels or disturbances experienced during one time (e.g., breeding) may not carry over to subsequent stages (e.g., moult). We, therefore, petition for directed research investigating whether feather CORT represents exposure to chronic stress in feathers grown during moult.  相似文献   

7.
Growing feathers and mounting immune responses are both energetically costly for birds. According to the life history trade‐off hypothesis, it has been posited that the costs of feather growth lead to temporal isolation between molt and other expensive activities, reproduction for example. In contrast to life cycle events, the need to mount an immune response can occur at any time, including during feather growth. Thus, we hypothesized that mounting an immune response during feather growth may divert energy and resources from feather growth and impair feather renewal. To test this hypothesis, we clipped or plucked the same feathers of male house sparrows Passer domesticus biblicus. In the clipped group (n = 16), the feathers were absent with no regrowth; in the plucked group (n = 14), feathers were absent and regrowth was initiated. We also had an intact control group of 15 sparrows. We then initiated an inflammatory immune response by subcutaneous injection over the left breast muscle of the birds with a lipopolysaccharide (LPS) and quantified behavioral and physiological responses. We predicted that sparrows with plucked feathers would incur the highest energetic costs while mounting an immune response, and would increase their foraging effort to offset this cost. We found no difference in body mass and resting metabolic rates among sparrows subjected to the different feather and immune treatments. However, we did find that while sparrows with plucked feathers increased foraging efficiency following the immune challenge by paying fewer but longer visits to the food tray, allowing them to maintain food consumption. Foraging efficiency in sparrows with clipped feathers was reduced. We also found that quality of newly grown feathers after the immune challenge was poorer in the plucked group, suggesting that mounting an immune response competes with feather growth for resources.  相似文献   

8.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

9.
In birds, the steroid hormone corticosterone (CORT) increases in response to real or perceived threats to homeostasis. A long‐term record of CORT exposure is recorded in feathers when the hormone is incorporated into the keratinized tissue, and then preserved when the mature feather is cut off from the blood supply. The opportunity to retrospectively assess the exposure of an individual to stressors by measuring the amount of CORT in a feather has generated excitement amongst avian ecologists. However, this technique is relatively new and requires additional validations. In this study, we performed experiments in wild caught European starlings Sturnus vulgaris to test whether: 1) CORT deposition in the feather depends on time of day and 2) whether an ecologically relevant stressor (unpredictable food access) causes a change in feather CORT. We found that exogenous CORT was incorporated into feathers during the day and the night. However, there was no difference in feather CORT between birds with unpredictable access to food and those with continuous access, indicating that feather CORT might not always detect ecologically relevant stressors.  相似文献   

10.
Diverse biomarkers including stable isotope, hormonal, and ecoimmunological assays are powerful tools to assess animal condition. However, an integrative approach is necessary to provide the context essential to understanding how biomarkers reveal animal health in varied ecological conditions. A barrier to such integration is a general lack of awareness of how shared extraction methods from across fields can provide material from the same animal tissues for diverse biomarker assays. In addition, the use of shared methods for extracting differing tissue fractions can also provide biomarkers for how animal health varies across time. Specifically, no study has explicitly illustrated the depth and breadth of spacial and temporal information that can be derived from coupled biomarker assessments on two easily collected tissues: blood and feathers or hair. This study used integrated measures of glucocorticoids, stable isotopes, and parasite loads in the feathers and blood of fall‐migrating Northern saw‐whet owls (Aegolius acadicus) to illustrate the wealth of knowledge about animal health and ecology across both time and space. In feathers, we assayed deuterium (δD) isotope and corticosterone (CORT) profiles, while in blood we measured CORT and blood parasite levels. We found that while earlier migrating owls had elevated CORT levels relative to later migrating birds, there was also a disassociation between plasma and feather CORT, and blood parasite loads. These results demonstrate how these tissues integrate time periods from weeks to seasons and reflect energetic demands during differing life stages. Taken together, these findings illustrate the potential for integrating diverse biomarkers to assess interactions between environmental factors and animal health across varied time periods without the necessity of continually recapturing and tracking individuals. Combining biomarkers from diverse research fields into an integrated framework hold great promise for advancing our understanding of environmental effects on animal health.  相似文献   

11.
The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing.  相似文献   

12.
The snowy owl is an elusive arctic predator known for its nomadic behaviour. Satellite tracking has revealed that some adult snowy owls could make an extensive use of the marine environment during the non‐breeding season. However, the relative contribution of marine resources to their diet is unknown. Stable isotope analyses can be useful to document the diet of mobile animals during periods of the year when individuals are less accessible. This study aimed to assess variation in isotopic values (δ13C and δ15N) of various feather types, and the usefulness of feathers to determine the contribution of the marine environment to the winter diet of snowy owls captured in summer. We sampled feathers coming from 6 body regions of 18 breeding females at two sites in the eastern Canadian Arctic in 2013 and 2014. Prior to analyses, diet‐tissue discrimination factors of snowy owl feathers were established in captivity. Variability in isotopic values among feather types was relatively low and pairwise correlations in isotopic values between feathers on the same individual were variable and often low, which suggests differences in the diet at the time when various feathers were synthesized. Diet reconstruction models detected a contribution of marine sources to snowy owl feathers ranging from 4 to 19% among feather types. However, the marine contribution was highly variable when single feathers were examined within individuals, ranging from 3 to 71%. This indicated that no single feather type could be used alone to reliably infer the contribution of marine resources to the winter diet of owls, possibly due to a high variability in the timing and sequence of molt. For asynchronous molters like snowy owls, we recommend sampling multiple feathers from various body regions, excluding wing feathers, to investigate winter diet or habitat use.  相似文献   

13.
Hoye BJ  Buttemer WA 《PloS one》2011,6(2):e16230
The majority of bird species studied to date have molt schedules that are not concurrent with other energy demanding life history stages, an outcome assumed to arise from energetic trade-offs. Empirical studies reveal that molt is one of the most energetically demanding and perplexingly inefficient growth processes measured. Furthermore, small birds, which have the highest mass-specific basal metabolic rates (BMRm), have the highest costs of molt per gram of feathers produced. However, many small passerines, including white-plumed honeyeaters (WPHE; Lichenostomus penicillatus), breed in response to resource availability at any time of year, and do so without interrupting their annual molt. We examined the energetic cost of molt in WPHE by quantifying weekly changes in minimum resting metabolic rate (RMRmin) during a natural-molt period in 7 wild-caught birds. We also measured the energetic cost of feather replacement in a second group of WPHEs that we forced to replace an additional 25% of their plumage at the start of their natural molt period. Energy expenditure during natural molt revealed an energy conversion efficiency of just 6.9% (±0.57) close to values reported for similar-sized birds from more predictable north-temperate environments. Maximum increases in RMRmin during the molt of WPHE, at 82% (±5.59) above individual pre-molt levels, were some of the highest yet reported. Yet RMRmin maxima during molt were not coincident with the peak period of feather replacement in naturally molting or plucked birds. Given the tight relationship between molt efficiency and mass-specific metabolic rate in all species studied to date, regardless of life-history pattern (Efficiency (%)  = 35.720•10−0.494BMRm; r2 = 0.944; p = <0.0001), there appears to be concomitant physiological costs entrained in the molt period that is not directly due to feather replacement. Despite these high total expenditures, the protracted molt period of WPHE significantly reduces these added costs on a daily basis.  相似文献   

14.
We examined feather molt progress of northern fulmars (Fulmarus glacialis) at Cape Vera in the Canadian High Arctic through opportunistic observation of individuals in flight from 2003 to 2006, and examination of bodies and wings of 127 individuals collected at the site, from 2003 to 2005. We found no evidence suggesting that fulmars shed primary feathers during breeding. Prebasic molt was initiated in the head, neck, sides, belly and back approximately 1 week before hatch. We failed to detect a sex effect on molt progress, but molt among breeders was delayed compared to molt in non- or failed breeders. This study constitutes a baseline we feel may be useful to: (1) researchers interested in feather replacement chronology, wherein feathers are used as sources of biological information; and (2) researchers interested in eventual assessment of relationships among large-scale environmental processes and molt progress in this species, especially in light of predicted changes to Arctic regions.  相似文献   

15.
Continent-wide variation in hydrogen isotopic composition of precipitation is incorporated into animal diets, providing an intrinsic marker of geographic location at the time of tissue growth. Feathers from migratory birds are now frequently analyzed for stable-hydrogen isotopes (δD) to estimate the location of individuals during a preceding molt. Using known-origin birds, we tested several assumptions associated with this emerging technique. We examined hydrogen isotopic variation as a function of age, sex, feather type and the timing of molt in a marked population of American redstarts (Setophaga ruticilla) breeding in southeastern Ontario. We measured δD in feathers and blood from individuals that bred or hatched at our study site during the year in which those tissues were grown. Juvenile tissues from 5- to 10-day-old birds had more negative δD values than those from adults, which most likely reflected age-related differences in diet. Within adults, primary feathers had more negative δD values than contour feathers. The mean δD value in adult primary feathers was relatively consistent among years and with the value expected for our study population. However, among-individual variation in δD corresponded to an estimated latitudinal range of 6–8° (650–900 km). We conclude that feathers sampled from recently hatched juveniles may not provide a reliable estimate of expected local isotopic signatures for comparison with adult feathers of unknown origin. Furthermore, we urge researchers to use caution when using δD values in feathers to infer geographic origin, and suggest that the best approach is to assign individuals to broad geographic zones within a species’ potential molting range.  相似文献   

16.

Background

The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.

Methodology/Principal Findings

The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance

This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.  相似文献   

17.
Molt strategies have received relatively little attention in current ornithology, and knowledge concerning the evolution, variability and extent of molt is sparse in many bird species. This is especially true for East Asian Locustella species where assumptions on molt patterns are based on incomplete information. We provide evidence indicating a complex postbreeding molt strategy and variable molt extent among the Pallas's Grasshopper Warbler Locustella certhiola, based on data from six ringing sites situated along its flyway from the breeding grounds to the wintering areas. Detailed study revealed for the first time that in most individuals wing feather molt proceeds from the center both toward the body and the wing‐tip, a molt pattern known as divergent molt (which is rare among Palearctic passerines). In the Russian Far East, where both breeding birds and passage migrants occur, a third of the adult birds were molting in late summer. In Central Siberia, at the northwestern limit of its distribution, adult individuals commenced their primary molt partly divergently and partly with unknown sequence. During migration in Mongolia, only descendantly (i.e., from the body toward the wing‐tip) molting birds were observed, while further south in Korea, Hong Kong, and Thailand the proportion of potential eccentric and divergent feather renewal was not identifiable since the renewed feathers were already fully grown as expected. We found an increase in the mean number of molted primaries during the progress of the autumn migration. Moderate body mass levels and low‐fat and muscle scores were observed in molting adult birds, without any remarkable increase in the later season. According to optimality models, we suggest that an extremely short season of high food abundance in tall grass habitats and a largely overland route allow autumn migration with low fuel loads combined with molt migration in at least a part of the population. This study highlights the importance of further studying molt strategy as well as stopover behavior decisions and the trade‐offs among migratory birds that are now facing a panoply of anthropogenic threats along their flyways.  相似文献   

18.
Carotenoid-based plumage coloration of birds has been hypothesized to honestly reflect individual quality, either because carotenoids are difficult to acquire via food or because of a trade-off in allocation of carotenoids between maintenance and signaling functions. We tested whether differential foraging ability is a necessary precondition for maintaining individual differences in carotenoid-based plumage coloration in male greenfinches (Carduelis chloris). Wild-caught birds were brought into captivity, where half of them were supplemented with carotenoids while the other half was maintained on a carotenoid-poor diet. Color of the yellow parts of tail feathers, grown under natural conditions, was compared with that of the replacement feathers, grown in captivity. Carotenoid supplementation increased feather chroma (saturation). Color of wild-grown feathers significantly correlated with the color of lab-grown feathers. This result demonstrates the existence of a significant component of variation in carotenoid coloration, which reflects physiological qualities or genetic differences among individuals independent of foraging ability. Among both experimental groups, plasma carotenoid concentration during feather growth strongly correlated with chroma of the feathers grown in captivity. This indicates that carotenoid-based plumage coloration can reveal circulating carotenoid levels over a very wide range of concentrations, suggesting the ample signaling potential of such a mechanism.  相似文献   

19.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

20.
Carotenoids produce many of the red, orange and yellow signal traits of birds, and individuals must trade off utilizing carotenoids for physiological processes versus ornamentation. Proximate mechanisms regulating this trade-off are poorly understood, despite their importance for expression of color signals. Corticosterone (CORT) may play a significant mechanistic role in signal expression because it mobilizes energy substrates and influences foraging behavior. We used a unique feather-based approach to test whether CORT mediates expression of carotenoid-based coloration. First, we investigated relationships between levels of CORT from feathers (CORTf) and carotenoid-based plumage signals in common redpolls (Acanthis flammea). Then, we determined how the width of growth bars and probability of having fault bars on feathers varied with CORTf, specifically whether these metrics reflected developmental costs of elevated CORT (“stress” hypothesis) or represented an individual’s quality (“quality” hypothesis). CORTf correlated positively with the strength of carotenoid signals, but only in adult males. However, also in adult males, CORTf was positively related to width of feather growth bars and negatively with probability of having fault bars, providing support for the quality hypothesis. Overall, CORTf was lower in adult males than in females or young males, possibly due to dominance patterns. Our results indicate that CORT may indirectly benefit feather quality, potentially by mediating the expression of carotenoid signals. We place our sex-specific findings into a novel framework that proposes that the influences of CORT in mediating carotenoid-based plumage traits will depend on the extent to which carotenoids are traded off between competing functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号