首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metacommunity framework integrates species‐specific responses to environmental gradients to detect emergent patterns of mesoscale organization. Abiotic characteristics (temperature, precipitation) and associated vegetation types change with elevation in a predictable fashion, providing opportunities to decouple effects of environmental gradients per se from those of biogeographical or historical origin. Moreover, expected structure is different if a metacommunity along an elevational gradient is molded by idiosyncratic responses to abiotic variables (expectation=Gleasonian structure) than if such a metacommunity is molded by strong habitat preferences or specializations (expectation=Clementsian structure). We evaluated metacommunity structure for 13 species of gastropod from 15 sites along an elevational transect in the Luquillo Experimental Forest of Puerto Rico. Analyses were conducted separately for the primary axis and for the secondary axis of correspondence extracted via reciprocal averaging. The metacommunity exhibited quasi‐Clementsian structure along the primary axis, which represented a gradient of gastropod species specialization that was unassociated with elevation. The secondary axis represented environmental variation associated with elevation. Along this axis, the metacommunity exhibited Clementsian structure, with specialists characterizing each of three suites of sites that corresponded to three distinct forest types. These forest types are associated with low (tabonuco forest), mid‐ (palo colorado forest), or high (elfin forest) elevations. Thus, variation among sites in species composition reflected two independent processes: the first decoupled from elevational variation and its environmental correlates, and the second highly associated with environmental variation correlated with elevation. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

2.
Aim We evaluated the structure of metacommunities for each of three vertebrate orders (Chiroptera, Rodentia and Passeriformes) along an extensive elevational gradient. Using elevation as a proxy for variation in abiotic characteristics and the known elevational distributions of habitat types, we assessed the extent to which variation in those factors may structure each metacommunity based on taxon‐specific characteristics. Location Manu Biosphere Reserve in the Peruvian Andes. Methods Metacommunity structure is an emergent property of a set of species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit structure for each metacommunity along an elevational gradient comprising 13 250‐m elevational intervals and 58 species of rodent, 92 species of bat or 586 species of passerine. Results For each taxon, the environmental gradient along which the metacommunity was structured was highly correlated with elevation. Clementsian structure (i.e. groups of species replacing other such groups along the gradient) characterized rodents, with a group of species that was characteristic of rain forests and a group of species that was characteristic of higher elevation habitats (i.e. above 1500 m). Distributions of bats were strongly nested, with more montane communities comprising subsets of species at lower elevations. The structure of the passerine metacommunity was complex and most consistent with a quasi‐Clementsian structure. Main conclusions Each metacommunity exhibited a different structure along the same elevational gradient, and each structure can be accounted for by taxon‐specific responses to local environmental factors that vary predictably with elevation. The structures of rodent and bird metacommunities suggest species sorting associated with habitat specializations, whereas structure of the bat metacommunity is probably moulded by a combination of species‐specific tolerances to increasingly cold, low‐productivity environs of higher elevations and the diversity and abundance of food resources associated with particular habitat types.  相似文献   

3.
A comprehensive framework for the evaluation of metacommunity structure   总被引:1,自引:0,他引:1  
The metacommunity framework is a powerful platform for evaluating patterns of species distribution in geographic or environmental space. Idealized patterns (checkerboard, Clementsian, evenly spaced, Gleasonian and nested distributions) give the framework shape. Each pattern represents an area in a multidimensional continuum of metacommunity structures; however, the current approach to analysis of spatial structure of metacommunities is incomplete. To address this, we describe additional non‐random structures and illustrate how they may be discerned via objective criteria. First, we distinguish three distinct forms of species loss in nested structures, which should improve identification of structuring mechanisms for nested patterns. Second, we define six quasi‐structures that are consistent with the conceptual underpinnings of Clementsian, Gleasonian, evenly spaced and nested distributions. Finally, we demonstrate how combinations of structures at smaller spatial extents may aggregate to form Clementsian structure at larger extents. These refinements should facilitate the identification of best‐fit patterns, associated structuring mechanisms, and informative scales of analysis and interpretation. This conceptual and analytical framework may be applied to network properties within communities (i.e. structure of interspecific interactions) and has broad application in ecology and biogeography.  相似文献   

4.
Aim We tested the hypothesis that distributions of Mexican bats are defined by shared responses to environmental gradients for the entire Mexican bat metacommunity and for each of four metaensembles (frugivores, nectarivores, gleaning insectivores, and aerial insectivores). Further, we identified the main environmental factors to which bats respond for multiple spatial extents. Location Mexico. Methods Using bat presence–absence data, as well as vegetation composition for each of 31 sites, we analysed metacommunity structure via a comprehensive, hierarchical approach that uses reciprocal averaging (RA) to detect latent environmental gradients corresponding to each metacommunity structure (e.g. Clementsian, Gleasonian, nested, random). Canonical correspondence analysis (CCA) was used to relate such gradients to variation in vegetation composition. Results For all bat species and for each ensemble, the primary gradient of ordination from RA, which is based on species data only, recovered an axis of humidity that matched that obtained for the first axis of the CCA ordination, which is based both on vegetation attributes and on species composition of sites. For the complete assemblage as well as for aerial and gleaning insectivores, analyses revealed Clementsian or quasi‐Clementsian structures with discrete compartments (distinctive groups of species along portions of an environmental gradient) coincident with the humidity gradient and with the Nearctic–Neotropical divide. Within‐compartment analysis further revealed Clementsian or quasi‐Clementsian structures corresponding to a gradient of elevational complexity that matched the second ordination axis in CCA. Frugivores had quasi‐nested structure, whereas nectarivores had Gleasonian structure. Main conclusions Our hierarchical approach to metacommunity analysis detected complex metacommunity structures associated with multiple environmental gradients at different spatial extents. More importantly, the resulting structures and their extent along environmental gradients are determined by ensemble‐specific characteristics and not by arbitrarily circumscribed study areas. This property renders compartment‐level analyses particularly useful for large‐scale ecological analyses in areas where more than one gradient may exist and species sorting may occur at multiple scales.  相似文献   

5.
Techniques to evaluate elements of metacommunity structure (EMS; coherence, species turnover and range boundary clumping) have been available for several years. Such approaches are capable of determining which idealized pattern of species distribution best describes distributions in a metacommunity. Nonetheless, this approach rarely is employed and such aspects of metacommunity structure remain poorly understood. We expanded an extant method to better investigate metacommunity structure for systems that respond to multiple environmental gradients. We used data obtained from 26 sites throughout Paraguay as a model system to demonstrate application of this methodology. Using presence–absence data for bats, we evaluated coherence, species turnover and boundary clumping to distinguish among six idealized patterns of species distribution. Analyses were conducted for all bats as well as for each of three feeding ensembles (aerial insectivores, frugivores and molossid insectivores). For each group of bats, analyses were conducted separately for primary and secondary axes of ordination as defined by reciprocal averaging. The Paraguayan bat metacommunity evinced Clementsian distributions for primary and secondary ordination axes. Patterns of species distribution for aerial insectivores were dependent on ordination axis, showing Gleasonian distributions when ordinated according to the primary axis and Clementsian distributions when ordinated according to the secondary axis. Distribution patterns for frugivores and molossid insectivores were best described as random. Analysis of metacommunities using multiple ordination axes can provide a more complete picture of environmental variables that mold patterns of species distribution. Moreover, analysis of EMS along defined gradients (e.g., latitude, elevation and depth) or based on alternative ordination techniques may complement insights based on reciprocal averaging because the fundamental questions addressed in analyses are contingent on the ordination technique that is employed.  相似文献   

6.
Most metacommunity studies have taken a direct mechanistic approach, aiming to model the effects of local and regional processes on local communities within a metacommunity. An alternative approach is to focus on emergent patterns at the metacommunity level through applying the elements of metacommunity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has very rarely been applied in the context of a comparative analysis of metacommunity types of main microbial, plant, and animal groups. Furthermore, to our knowledge, no study has associated metacommunity types with their potential ecological correlates in the freshwater realm. We assembled data for 45 freshwater metacommunities, incorporating biologically highly disparate organismal groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first examined ecological correlates (e.g., matrix properties, beta diversity, and average characteristics of a metacommunity, including body size, trophic group, ecosystem type, life form, and dispersal mode) of the three elements of metacommunity structure (i.e., coherence, turnover, and boundary clumping). Second, based on those three elements, we determined which metacommunity types prevailed in freshwater systems and which ecological correlates best discriminated among the observed metacommunity types. We found that the three elements of metacommunity structure were not strongly related to the ecological correlates, except that turnover was positively related to beta diversity. We observed six metacommunity types. The most common were Clementsian and quasi‐nested metacommunity types, whereas Random, quasi‐Clementsian, Gleasonian, and quasi‐Gleasonian types were less common. These six metacommunity types were best discriminated by beta diversity and the first axis of metacommunity ecological traits, ranging from metacommunities of producer organisms occurring in streams to those of large predatory organisms occurring in lakes. Our results showed that focusing on the emergent properties of multiple metacommunities provides information additional to that obtained in studies examining variation in local community structure within a metacommunity.  相似文献   

7.
Tad Dallas  Steven J. Presley 《Oikos》2014,123(7):866-874
Identification of mechanisms that shape parasite community and metacommunity structures have important implications to host health, disease transmission, and the understanding of community assembly in general. Using a long‐term dataset on parasites from desert rodents, we examined the relative contributions of host traits that represent important aspects of parasite environment, transmission probability between host species, and host phylogeny to the structure of a parasite metacommunity as well as for taxonomically restricted parasite metacommunities (coccidians, ectoparasites and helminths). This was done using a combination of metacommunity analysis and variance partitioning based on canonical correspondence analysis. Coccidian and ectoparasite metacommunities did not exhibit coherent structure. In contrast, helminths and the full parasite metacommunity had Clementsian and quasi‐Clementsian structure, respectively, indicating that parasite species distributions for these metacommunities were compartmentalized along a dominant gradient. Variance decomposition indicated that characteristics associated with the host environment consistently explained more variation than did host traits associated with transmission opportunities or host phylogeny, indicating that the host environment is primary in shaping parasite species distributions among host species. Moreover, the importance of different types of host traits in structuring parasite metacommunities was consistent among taxonomic groups (i.e. full metacommunity, coccidians, and helminths) despite manifest differences in emergent structures (i.e. Clementsian, quasi‐Clementsian, and random) that arose in response to variation in host environment.  相似文献   

8.
9.
Metacommunity theory provides a framework to understand how ecological communities vary in space and time. However, few studies have investigated metacommunity processes in a context of long term changes. Environmental changes can impact species distribution and therefore the structure of metacommunities. Using two complementary methods, this study evaluated the temporal variability of bird metacommunity processes in an agricultural landscape after 25 years of changes in land-cover. Bird and landscape data were recorded in the same locations using a series of 256 point counts in 1982 and 2007. First, variance partitioning was applied to quantify the roles of environmental filtering (i.e. landscape composition variables) and spatial variables to organize bird metacommunities each year. Second, changes in the structure of the bird metacommunity were examined by quantifying three of its components: coherence, species turnover and species range boundary clumping. Our results demonstrate that landscape variables explained slightly more bird metacommunity patterns than spatial variation of unknown origin each year. The bird metacommunity had a Clementsian structure (i.e. grouped distribution of species along environmental gradients) which was correlated with a landscape gradient ranging from open farmland to wooded sites. This structure was similar each year. To conclude, the study shows that environmental filtering with specializations to different habitats is a major process in determining bird metacommunities in landscapes. Moreover, our results suggest that metacommunity structure can remain constant over time despite demographic and environmental changes.  相似文献   

10.
Biodiversity at larger spatial scales (γ) can be driven by within‐site partitions (α), with little variation in composition among locations, or can be driven by among‐site partitions (β) that signal the importance of spatial heterogeneity. For tropical elevational gradients, we determined the (a) extent to which variation in γ is driven by α‐ or β‐partitions; (b) elevational form of the relationship for each partition; and (c) extent to which elevational gradients are molded by zonation in vegetation or by gradual variation in climatic or abiotic characteristics. We sampled terrestrial gastropods along two transects in the Luquillo Mountains. One passed through multiple vegetation zones (tabonuco, palo colorado, and elfin forests), and one passed through only palm forest. We quantified variation in hierarchical partitions (α, β, and γ) of species richness, evenness, diversity, and dominance, as well as in the content and quality of litter. Total gastropod abundance linearly decreased with increasing elevation along both transects, but was consistently higher in palm than in other forest types. The gradual linear decline in γ‐richness was a consequence of opposing patterns with regard to α‐richness (monotonic decrease) and β‐richness (monotonic increase). For evenness, diversity, and dominance, α‐partitions and γ‐partitions evinced mid‐elevational peaks. The spatial organization of gastropod biodiversity did not mirror the zonation of vegetation. Rather, it was molded by: (a) elevational variation in productivity or nutrient characteristics, (b) the interspersion of palm forest within other forest types, and (c) the cloud condensation point acting as a transition between low and high elevation faunas. Abstract in Spanish is available with online material.  相似文献   

11.
Fungi are key organisms in terrestrial ecosystems, functioning as decomposers, pathogens, and symbionts. Identifying the mechanisms that shape metacommunity patterns is likely to be critical for predicting how ecosystems will respond to global environmental change. Using fungal occurrence data and a hierarchical approach that combines three elements of metacommunity structure—coherence, turnover and boundary clumping—we identified the structures that best describe metacommunity patterns. We related these patterns to underlying environmental and spatial variables known to influence fungal distribution, and determined the relative importance of the environment and geographic distance in structuring fungal metacommunities. Fungal metacommunities had Clementsian and quasi-Clementsian structures, indicating that species distributions were compartmentalized along a dominant environmental gradient. This gradient was strongly associated with annual precipitation, precipitation seasonality and pH for the entire metacommunity. Variance partitioning revealed that the environment was relatively more important than geographic distance in explaining metacommunity patterns, indicating that niche-based processes are crucial in shaping species distributions among sites. However, the strength of the relationship between the latent gradient and environmental factors and the relative contributions of the environment and geographic distance to metacommunity structure varied across groups, suggesting that interactions among habitat, dispersal and life-history might be driving these differences.  相似文献   

12.
13.
14.
Most studies characterize metacommunities based on a single snapshot of the spatial structure, which may be inadequate for taxa with high migratory behavior (e.g., fish). Here, we applied elements of metacommunity structure to examine variations in the spatial distributions of stream fishes over time and to explore possible structuring mechanisms. Although the major environmental gradients influencing species distributions remained largely the same in time, the best-fit pattern of metacommunity structure varied according to sampling occasion and whether or not we included non-native species in the analyses. Quasi-Clementsian and Clementsian structures were the predominant best-fit structures, indicating the importance of species turnover among sites and the existence of more or less discrete community boundaries. The environmental gradient most correlated with metacommunity structure was defined by altitude, area of artificial ponds in the catchment, and dissolved oxygen content. Our results suggest that the best-fit metacommunity structure of the native species can change in time in this catchment due to seasonal changes in distribution patterns. However, the distribution of non-native species throughout the landscape homogenizes the temporal variability in metacommunity structure of native species. Further studies are necessary from other regions to examine best-fit metacommunity structures of stream fishes within relatively short environmental gradients.  相似文献   

15.
Aim We evaluate characteristics of species ranges (i.e. coherence, species turnover and range boundary clumping) to determine the structure of bat metacommunities and metaensembles from Caribbean islands. We evaluate the effects of endemic species on that structure, and quantify associations between island characteristics and latent environmental gradients that structure these metacommunities and metaensembles. Location Sixty‐five Caribbean islands throughout the Bahamas, Greater Antilles and Lesser Antilles. Methods Metacommunity structure is an emergent property of a set of ecological communities at different sites defined by species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit pattern for metacommunities from all Caribbean islands, as well as from the Bahamas, the Greater Antilles and the Lesser Antilles separately. For each island group, analyses were conducted for all bats and for each of two broadly defined guilds (i.e. carnivores and herbivores). In addition, analyses were conducted for all species and for a subset in which endemic species were removed from the fauna. Spearman rank correlations identified island characteristics (area, elevation, latitude, longitude) that were associated significantly with island scores for ordination axes based on reciprocal averaging. Results Metacommunity structure for all bats and for carnivores was similar for each island group, with Clementsian distributions (i.e. discrete communities with groups of species replacing other groups of species along the gradient) for all islands, the Bahamas and the Lesser Antilles, but with nested distributions for the Greater Antilles. Herbivore distributions were random for the Bahamas, but were Clementsian for all other island groups. Removal of endemic species affected the best‐fit model of metacommunity structure in only 3 of 12 cases. In general, ordination scores for islands were correlated with longitude or latitude, but not with island area or elevation. Main conclusions Characteristics of bat species ranges and associated metacommunity structure were primarily dependent on the number and geographic arrangement of primary sources of colonization, and not on interspecific interactions, species‐specific levels of environmental tolerance, or the physical characteristics of islands. Endemic species did not greatly affect metacommunity structure in Caribbean bats.  相似文献   

16.
17.
An important aspect of conservation is to understand the founding elements and characteristics of metacommunities in natural environments, and the consequences of anthropogenic disturbance on these patterns. In natural Amazonian environments, the interfluves of the major rivers play an important role in the formation of areas of endemism through the historical isolation of species and the speciation process. We evaluated elements of metacommunity structure for Zygoptera (Insecta: Odonata) sampled in 93 Amazonian streams distributed in two distinct biogeographic regions (areas of endemism). Of sampled streams, 43 were considered to have experienced negligible anthropogenic impacts, and 50 were considered impacted by anthropogenic activities. Our hypothesis was that preserved (“negligible impact”) streams would present a Clementsian pattern, forming clusters of distinct species, reflecting the biogeographic pattern of the two regions, and that anthropogenic streams would present random patterns of metacommunity, due to the loss of more sensitive species and dominance of more tolerant species, which have higher dispersal ability and environmental tolerance. In negligible impact streams, the Clementsian pattern reflected a strong biogeographic pattern, which we discuss considering the areas of endemism of Amazonian rivers. As for communities in human‐impacted streams, a biotic homogenization was evident, in which rare species were suppressed and the most common species had become hyper‐dominant. Understanding the mechanisms that trigger changes in metacommunities is an important issue for conservation, because they can help create mitigation measures for the impacts of anthropogenic activities on biological communities, and so should be expanded to studies using other taxonomic groups in both tropical and temperate systems, and, wherever possible, at multiple spatial scales.  相似文献   

18.
The elements of metacommunity structure (EMS) framework gives rise to important ecological insights through the distinction of metacommunities into several different idealised structures. We examined the EMS in assemblages occupying a low-mountain river system in central Germany, sampled over three consecutive years. We compared the idealised distributions of assemblages in both the riparian floodplain zone (carabid beetles and spiders) and the benthic instream environment (benthic invertebrates). We further deconstructed instream organisms into taxonomic and trait groups to examine whether greater signal emerges in more similar species groups. We found little evidence of strong competition, even for trait-modality groups, and nestedness was almost non-existent. In addition to random distributions, Gleasonian distributions (indicating clear, but individualistic turnover between sites) were the most commonly identified structure. Clear differences were apparent between different trait groups, particularly between within-trait modalities. These were most evident for different dispersal modes and life cycle durations, with strong dispersers showing possible signs of mass effects. While random distributions may have partly reflected small sample sizes, clearly coherent patterns were evident for many groups, indicating a sufficient gradient in environmental conditions. The prevalence of random distributions suggests many species are responding to a variety of environmental filters in these river-floodplain metacommunities in an anthropogenically-dominated landscape, whereas Gleasonian distributions indicate species are responding idiosyncratically to a primary environmental gradient. Our findings further emphasise the prevalence of context dependency (spatio-temporal variability) in metacommunity studies, thus we stress the need to further disentangle the causes of such variation.  相似文献   

19.
20.
Abstract.  1. Several non-random patterns in the distribution of species have been observed, including Clementsian gradients, Gleasonian gradients, nestedness, chequerboards, and evenly spaced gradients. Few studies have examined these patterns simultaneously, although they have often been studied in isolation and contrasted with random distribution of species across sites.
2. This study examined whether assemblages of chironomid midges exhibit any of the idealised distribution patterns as opposed to random distribution of species across sites within the metacommunity context in a boreal drainage system. Analyses were based on stream surveys conducted during three consecutive years. Analytical approaches included ordinations, cluster analysis, null models, and associated randomisation methods.
3. Midge assemblages did not conform to Clementsian gradients, which was evidenced by the absence of clearly definable assemblage types with numerous species exclusive to each assemblage type. Rather, there were signs of continuous Gleasonian variability of assemblage composition, as well as significant nested subset patterns of species distribution.
4. Midge assemblages showed only weak relationships with any of the measured environmental variables, and even these weak environmental relationships varied among years.
5. Midge assemblages did not appear to be structured by competition. This finding was somewhat problematic, however, because the two indices measuring co-occurrence provided rather different signs of distribution patterns. This was probably a consequence of how they actually measure co-occurrence.
6. Although midge assemblages did not show a perfect match with any of the idealised distribution patterns, they nevertheless showed a resemblance to the empirical patterns found previously for several plant and animal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号