首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anton Pauw  William J. Bond 《Oikos》2011,120(10):1531-1538
There are at least two immediate reasons why it is important to determine the role of biotic interactions, such as pollination, in limiting species distribution ranges. Firstly, if range limits are imposed by biotic factors, current and future distribution ranges might not be constrained by climate. Secondly, if biotic interactions limit the distribution ranges of species, anthropogenic impacts on these interactions are likely to have a major effect on biodiversity. Here we test the role of pollination in limiting plant distributions by studying plant community assembly in a guild of 15 oil‐secreting orchids (Coryciinae) along a pollination gradient. In all members of the guild, seed production depends on pollination by the oil‐collecting bee Rediviva peringueyi (Melittidae). While the mode of aboveground reproduction is uniform across the guild, the orchid species differ widely in their capacity for belowground clonal reproduction through the formation of bulbils, and hence span a range of predicted dependence on pollination (and subsequent seed set) for population persistence. Pollination rate by R. peringueyi varied across the landscape from 0 to 98% of flowers pollinated. With decreasing pollination, species richness of the orchid guild declined, and species were lost by the successive deletion of the least clonal species. Thus, pollination is shown to act as a biotic filter, excluding non‐clonal species from pollinator‐poor communities. The findings are consistent with the idea that pollination mutualisms matter ecologically by limiting the distribution of non‐clonal plants. Conversely, the results suggest that clonality allows some plant species to escape from the range of their pollinators.  相似文献   

2.
While Darwin (1862, 1877) showed that reproductive success in orchid populations depended on adaptive floral morphology coupled with pollinator visitation a more recent review of the literature (Tremblay et al., 2005) confirmed that many out-breeding species are pollinator-limited because most orchid species showing low fecundity also lack rewards. The absence of rewards depresses both pollinator fidelity and the frequency of pollinator visits to an orchid population even though orchid flowers that lack rewards retain the same interlocking floral structures for precise pollinia removal and deposition found in related species that offer rewards. Using the genus, Cypripedium, as a model lineage of non-rewarding flowers this study also shows that the correlation between low fruit set in a Cypripedium sp. and its specific pollinator(s) is insufficient to predict specific frequencies of low fecundity. Annual rates of fruit set often vary broadly between populations of the same species and within the same population over several seasons. We speculate that fruit-set rates also decline when orchid demography and additional biotic and abiotic factors interrupt rates of pollinator activity (pre-zygotic) and fertilization/fruit maturation (post-zygotic). We suggest that that traditional field studies on pollination ecology and breeding systems be combined with data sets recording genetic variation and orchid flower demography in relation to seasonal variation in climate. We also propose that the same information be collected in regard to genetic variation, demography and phenology of populations of known orchid pollinators and co-blooming angiosperm species native to orchid habitats.  相似文献   

3.
  • Rewardless plants can attract pollinators by mimicking floral traits of rewarding heterospecific plants. This should result in the pollination success of floral mimics being dependent on the relative abundance of their models, as pollinator abundance and conditioning on model signals should be higher in the vicinity of the models. However, the attraction of pollinators to signals of the models may be partially innate, such that spatial isolation of mimics from model species may not strongly affect pollination success of mimics.
  • We tested whether pollination rates and fruit set of the rewardless orchid Disa pulchra were influenced by proximity and abundance of its rewarding model species, Watsonia lepida.
  • Pollination success of the orchid increased with proximity to the model species, while fruit set of the orchid increased with local abundance of the model species. Orchids that were experimentally translocated outside the model population experienced reduced pollinaria removal and increased pollinator‐mediated self‐pollination.
  • These results confirm predictions that the pollination success of floral mimics should be dependent on the proximity and abundance of model taxa, and thus highlight the importance of ecological facilitation among species involved in mimicry systems.
  相似文献   

4.
The mimicry of malpighiaceous oil‐flowers appears to be a recurrent pollination strategy among many orchids of the subtribe Oncidiinae. These two plant groups are mainly pollinated by oil‐gathering bees, which also specialize in pollen collection by buzzing. In the present study, the floral ecology of the rewardless orchid Tolumnia guibertiana (Oncidiinae) was studied for the first time. The orchid was self‐incompatible and completely dependent on oil‐gathering female bees (Centris poecila) for fruit production. This bee species was also the pollinator of two other yellow‐flowered plants in the area: the pollen and oil producing Stigmaphyllon diversifolium (Malpighiaceae) and the polliniferous and buzzing‐pollinated Ouratea agrophylla (Ochnaceae). To evaluate whether this system is a case of mimetism, we observed pollinator visits to flowers of the three plant species and compared the floral morphometrics of these flowers. The behavior, preferences and movement patterns of Centris bees among these plants, as well as the morphological data, suggest that, as previously thought, flowers of T. guibertiana mimic the Malpighiaceae S. diversifolium. However, orchid pollination in one of the studied populations appears to depend also on the presence of O. agrophylla. Moreover, at the two studied populations, male and female pollination successes of T. guibertiana were not affected by its own floral display, and did not differ between populations. The results are discussed in relation to the behavior and preferences of Centris bees, as well as the differential presence and influence of each of the two floral models.  相似文献   

5.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

6.
Variation in within-population floral density can affect interactions between plants and pollinators, resulting in variable pollen export for plants. We investigated the effects of conspecific and heterospecific floral densities on pollination success both of two related, self-compatible, nectar-rewarding orchid species in Ireland, Spiranthes romanzoffiana (rare and listed as endangered) and its congener, S. spiralis (more abundant and not of conservation concern). Floral densities, insect visitation rates, and orchid pollen transport were recorded in multiple quadrats in four populations of both orchid species over their flowering season. We found that conspecific and heterospecific co-flowering plant density affected pollination in both orchid species. For S. romanzoffiana, higher heterospecific density increased pollen removal. For S. spiralis, higher conspecific visitation increased pollen removal and increased heterospecific density decreased pollen deposition. In addition, increased conspecific density increased pollen deposition in both species. This study shows that plants may interact to facilitate or compete for different components of the pollination process, namely; pollinator attraction, pollen removal and deposition. Such interactions have immediate consequences for endangered plant species, as increases in both conspecific and heterospecific coflowering density may ameliorate the negative effects of rarity on pollination, hence overall reproductive success.  相似文献   

7.
8.
The orchid bees constitute a clade of prominent insect pollinators distributed throughout the Neotropical region. Males of all species collect fragrances from natural sources, including flowers, decaying vegetation and fungi, and store them in specialized leg pockets to later expose during courtship display. In addition, orchid bees provide pollination services to a diverse array of Neotropical angiosperms when foraging for food and nesting materials. However, despite their ecological importance, little is known about the evolutionary history of orchid bees. Here, we present a comprehensive molecular phylogenetic analysis based on ~4.0 kb of DNA from four loci [cytochrome oxidase (CO1), elongation factor 1‐α (EF1‐α), arginine kinase (ArgK) and RNA polymerase II (Pol‐II)] across the entire tribe Euglossini, including all five genera, eight subgenera and 126 of the approximately 200 known species. We investigated lineage diversification using fossil‐calibrated molecular clocks and the evolution of morphological traits using disparity‐through‐time plots. In addition, we inferred past biogeographical events by implementing model‐based likelihood methods. Our dataset supports a new view on generic relationships and indicates that the cleptoparasitic genus Exaerete is sister to the remaining orchid bee genera. Our divergence time estimates indicate that extant orchid bee lineages shared a most recent common ancestor at 27–42 Mya. In addition, our analysis of morphology shows that tongue length and body size experienced rapid disparity bursts that coincide with the origin of diverse genera (Euglossa and Eufriesea). Finally, our analysis of historical biogeography indicates that early diversification episodes shared a history on both sides of Mesoamerica, where orchid bees dispersed across the Caribbean, and through a Panamanian connection, thus reinforcing the hypothesis that recent geological events (e.g. the formation of the isthmus of Panama) contributed to the diversification of the rich Neotropical biota. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 552–572.  相似文献   

9.
  • Cockroaches have rarely been documented as pollinators. In this paper we examine whether this is because they might be inefficient at pollination compared to other pollinators. Clusia blattophila, a dioecious shrub growing on isolated rocky outcrops in French Guiana, is pollinated by Amazonina platystylata cockroaches and provides a valuable system for the study of cockroach pollination efficiency.
  • We examined the species composition of the visitor guild and visitation rates by means of camcorder recordings and visitor sampling. Then, we investigated the capacity for pollen transfer of principal visitors and found correlations between visitation rates and pollen loads on stigmas. In an exclusion experiment we determined the contributions of individual species to pollination success.
  • Amazonina platystylata, crickets and two species of Diptera transferred pollen, but the number of transferred pollen grains was only related to visitation rates in the case of cockroaches. Crickets visited and rarely carried pollen. Dipterans were as frequent as cockroaches, carried similar pollen loads, but transferred much less pollen. An estimated 41% and 17% of ovules were pollinated by cockroaches and dipterans, respectively. The remaining ovules were not pollinated. There was no spatial variation in pollinator guild composition, but cockroaches visited flowers less frequently at the smaller study site.
  • We demonstrate that cockroaches pollinate a large proportion of ovules. Their pollination service is not confined to one study site and, unlike that provided by dipterans, is not limited to certain years. We suggest that cockroach pollination has been overlooked and that cockroach‐pollinated plants, which share certain floral features, possess adaptations to pollination by cockroaches.
  相似文献   

10.
Many vespid wasps visit flowers to forage nectar. These hymenopterans sometimes contribute to flower pollination. However, none of the nocturnal wasp species is a known pollinator. We collected individuals of light‐attracted Provespa nocturna workers in a montane rainforest on Peninsular Malaysia: some wasps collected bore orchid pollinia on their thoraxes. Among 114 trapped individuals, four bore pollinaria and nine bore only viscidia, suggesting that pollinia had been successfully transported. Molecular barcoding of the pollinia (based on their ITS sequences) assigned the orchid to a species in Coelogyne fimbriata complex. These findings and our other analyses suggest that this nocturnal wasp contributes to pollination of an epiphytic nectarless orchid that probably releases olfactory attractants. This discovery sheds light on the importance of mutualistic relationships between the nocturnal social wasps and epiphytic orchids in Southeast Asian tropical rainforest canopies.  相似文献   

11.
The geographical distribution, population structure and pollination ecology are key aspects in the conservation and management of rare orchids. Here, we address these aspects and the main threats affecting the endangered Cuban orchid Broughtonia cubensis. This rewardless orchid is self‐compatible, but pollinator dependent. However, seed production can be negatively affected by insect‐mediated selfing. Three species of small bee (genera Ceratina and Lasioglossum) act as pollinators. As in the case of other nectarless orchids, we detected two species of plant producing large amounts of nectar in the area, the floral morphology of which closely resembles that of B. cubensis. The simultaneous flowering of these species could positively affect the reproductive success of B. cubensis. Nonetheless, the fitness of this orchid in natural conditions is low, possibly related to strong pollen limitation. To the problems arising from reduced fitness is added the fact that its historical distribution range has been greatly reduced in recent years. Throughout this study, we have detected dramatic reductions in the population sizes, in some cases as a result of human plundering, but also as a consequence of hurricanes. Based on the results of this study, we propose some guidelines to manage and conserve this orchid. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 345–357.  相似文献   

12.
The crucial role of reproductive isolation in speciation has long been recognized; however, a limited number of studies quantify different isolation barriers and embed reproductive isolation in a phylogenetic context. In this study, we investigate reproductive isolation between the often sympatrically occurring orchid species, Gymnadenia conopsea and G. odoratissima. We examine the phylogenetic relationship between the two species and analyse floral isolation, fruit set and seed viability from interspecies crosses, as well as the ploidy level. Additionally, we quantify interspecies differences in floral signals and morphology. The results suggest that the two species have a sister–species relationship. In terms of reproductive isolation, we found complete floral isolation between the two species, but little to no post‐pollination isolation; the species also mostly had the same ploidy level in the studied populations. We also show clear distinctions in floral signals, as well as in floral size and spur length. We propose that respective adaptation to short‐ vs. long‐tongued pollinators was the driver of speciation in the here studied Gymnadenia species. Our study supports the key role of floral isolation in orchid speciation and shows that floral isolation is not restricted to highly specialized pollination systems, but can also occur between species with less specialized pollination.  相似文献   

13.
Pollinator‐mediated convergence in floral traits is the fundamental basis for pollination syndromes, but it has seldom been rigorously analysed. Here we synthesize information on a guild of South African plants that are pollinated by functionally similar pompilid wasps in the genus Hemipepsis and investigate the extent of trait convergence in guild members. The guild includes members from three plant families (Apocynaceae, Orchidaceae and Asparagaceae subfamily Scilloideae) and contains remarkably high levels of functional specialization with 18 of the 23 known guild members being pollinated exclusively by Hemipepsis wasps. The distribution of the guild is centred in the moist upland grasslands of eastern South Africa. Qualitative similarities among guild members include dull greenish‐ or brownish‐white flowers, often with purple blotches, mid‐summer flowering, sweet spicy scent and exposed nectar. To assess the extent of convergent evolution within the guild, we compared floral traits of guild members with those of congeneric non‐wasp‐pollinated species. Guild members typically produce moderate volumes (> 4 µL per flower per day) of concentrated (> 50% sugar by weight) sucrose‐dominant nectar. The nectar properties of guild members did not, however, differ significantly from those of congeneric species pollinated by other vectors. Non‐metric multidimensional scaling of scent data for 15 guild members and 17 congeners (obtained through gas chromatography–mass spectrometry of headspace samples and supplemented with published data) yielded little evidence for convergent evolution in the overall scent composition of guild members. However, convergence in floral spectral reflectance was evident in the guild members; in particular, loci for colours of guild members were significantly closer to the guild centroid than loci for colours of congeners, and they formed a distinct cluster in the blue to blue–green region of the hymenopteran colour hexagon. The colours of guild members were also significantly closer to the colour of background vegetation than those of congeneric species, suggesting a role for cryptic colouring in this system. These results confirm convergence in the floral colours of plants that are pollinated by Hemipepsis spider‐hunting wasps, but also suggest that other traits, such as nectar properties, do not necessarily evolve during shifts between pollination systems. Identification of particular scent compounds and non‐sugar nectar constituents that influence wasp behaviour will be essential for illuminating the extent of biochemical convergence in the guild members. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 278–299.  相似文献   

14.
The majority of flowering plants, including many rare and threatened species, are pollinated by animals, but little is known of pollination and breeding systems of many endangered species. Polemonium caeruleum (Polemoniaceae) is a red‐listed species and is regarded as dichogamous, self‐compatible and bee pollinated. However, some studies show that it is visited by a vast assemblage of anthophilous insects from many taxonomic orders and that breeding systems vary greatly between closely related taxa of this genus. Over a period of 3 years we investigated breeding system, dichogamy, nectar secretion and composition, insect visitations and pollen loads in flowers of P. caeruleum in north‐eastern Poland to determine whether the reproductive biology of the plant explains its rarity. Contrary to published data, our study plants were self‐incompatible and showed a high degree of outcrossing. Our experimental work confirmed the occurrence of protandry in this species, revealed that nectar is sucrose‐dominant and proline‐rich and, for the first time for Polemoniaceae, that nectar secretion and nectar sugar concentration in flowers of P. caeruleum is female‐biased. Although flowers were visited by at least 39 species of insects from five taxonomic orders, overall the plant exhibited many characters associated with bee pollination, and analysis of insect performance showed that bumblebees and honeybees are the key pollinators; occasionally hoverflies and butterflies may also be involved. We conclude that, in terms of pollination system, P. caeruleum demonstrates high apparent generalization, but low realized generalization, and is a functional specialist, as most pollinators belong to a single functional group (guild). Its conservation status, at least in our study population, cannot be explained in terms of the biological properties of its breeding or pollination systems; rather, the present decline of the species is caused by habitat loss. However, if this process and bumblebee decline in Europe continue, P. caeruleum populations may diminish in numbers and density and, owing to the self‐incompatibility of the species, quickly become severely pollen‐limited, thereby accelerating further local extinctions. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 92–107.  相似文献   

15.
Pollination efficiency and reproductive success vary strongly among populations of most animal‐pollinated plant species, depending on their size and local density, whereas individual plants within populations experience varying levels of reproductive output as a result of differences in floral display. Although most orchid species have been shown to be severely pollination limited, few studies have investigated the impact of the above‐mentioned factors on pollination success and reproduction, especially in rewarding species. In this study, the impact of population size, local density of flowering plants, and floral display on the rates of pollinia export and fruit production was investigated in 13 natural populations of the rewarding terrestrial orchid Listera ovata. In addition, an emasculation experiment was set up to examine how floral display and local density of flowering plants affected the relative importance of cross‐ vs. geitonogamous pollination in determining fruit set. In the studied populations, pollination efficiency, pollen removal, and fruit set increased with increasing population size until a threshold value of 30–40 flowering plants was reached, above which pollination efficiency and reproductive output decreased again. On average, plants with large floral displays showed higher proportional pollinia removal and fruit set compared with smaller plants. Fruit production was also significantly and positively related to local plant density, whereas emasculation did not affect the relationship between local plant density and fruit set, suggesting that geitonogamous pollination did not affect the outcome of female function. The results of this study are discussed in the light of the flowering mechanism of the species and its generalized pollination system. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 713–721.  相似文献   

16.
Non‐rewarding orchids rely on various ruses to attract their pollinators. One of the most common is for them to resemble flowers sought by insects as food sources. This can range from generalized food deception to the mimicry of specific sympatric food plants. We investigated the basis of pollinator deception in the European food‐deceptive orchid Traunsteinera globosa, which has unusually compact flowerheads resembling those of sympatric rewarding species of Knautia and Scabiosa (Dipsacaceae), and Valeriana (Caprifoliaceae). Visual signals of T. globosa are similar in both fly and bee vision models to those of the sympatric food plants used in the choice experiments, but scent signals are divergent. Field experiments conducted in Austria and the Czech Republic showed that both naive and experienced (with respect to visitation of T. globosa) insect species approached the orchids at the same rate as food plants, but direct contact with orchid flowers was taxon specific. Flies were most easily duped into probing the orchid, and, in doing so, frequently received and deposited pollinaria, whereas most bees and butterflies avoided landing on orchid flowers. We conclude that T. globosa is a mimic of a guild of fly‐pollinated plants, but the ecological dependence of the orchid on its models remains to be fully tested. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 269–294.  相似文献   

17.
  • The incredible pollination mechanisms displayed by orchid flowers has inspired biologists over the centuries. Based on the intriguing flower structures, the relationship among orchid species and their pollinators has been frequently regarded as very specialised.
  • Given that visits on flowers pollinated by oil‐collecting bees are regularly rare, and in Oncidiinae the flowers frequently attractexclusively species that act as effective pollinators, the comparative reproductive biology and pollinator specificity of two sympatric Gomesa (G. varicosa and G. montana; Oncidiinae) were analysedbased on records of floral morphology, production of floral rewards, pollinators and pollination mechanisms. Furthermore, experimental pollinations were carried out in order to examine the breeding systems.
  • The results have show that in the studied population, both Gomesa are visited by several bee species, but these orchids present a specific pollination system.Pollinaria are deposited on the head of Centridini (G. varicosa and G. montana) and Epicharitini (G. varicosa) bees when landed on the central callus of the labellumto collect lipoidal substances produced by glandular elaiophores on lateral lobes of the labellum. Both species are dependent on a biotic pollen vector to set fruits. Gomesamontana is completely self‐incompatible, while G. varicosa is partially self‐compatible.
  • Our results indicate that although the occurrence of self‐sterile species seems to be common in Oncidiinae, in partially self‐incompatible species, as is the case of G. varicosa, self‐compatibility has been considered as an important factor favouring reproductive assurance in populations with low visitation frequencies, despite occurrence of inbreeding depression.
  相似文献   

18.
Dendrobium wangliangii is an epiphytic orchid distributed in the Jinshajiang dry‐hot valley in Luquan County, Yunnan Province, China. Most Dendrobium spp. typically have a low fruit set, but this orchid shows a higher fruit set under natural conditions despite the lack of effective pollinators. The pollination biology of the critically endangered D. wangliangii was investigated in this study. A fruit set rate of 33.33 ± 4.71% was observed after bagging treatment in 2017 and a high fruit set rate (65.72 ± 4.44% in 2011; 50.79 ± 5.44% in 2017) was observed under natural conditions, indicating that D. wangliangii is characterized by spontaneous self‐pollination. The anther cap blocked the growing pollinium; thus, the pollinium slid down and reached the stigmatic cavity, leading to autogamous self‐pollination. Specifically, 51.50% of 162 unopened flowers (total 257 flowers) of this Dendrobium species under extreme water‐deficit conditions developed into fruits, suggesting the presence of cleistogamy in D. wangliangii. Here, cleistogamy may represent the primary mode of pollination for this orchid. Spontaneous self‐pollination and specific cleistogamous autogamy could represent major adaptions to the drought and pollinator‐scarce habitat in the Jinshajiang dry‐hot valley.  相似文献   

19.
Crane flies and microlepidoptera have been recorded as pollinators in unrelated orchid groups, but these insects have never been recorded in Epidendroideae, the most species‐rich orchid subfamily, which includes one of the most diverse genera among Orchidaceae, Epidendrum. Based on data on phenology, floral morpho‐anatomy, pollinators, pollination mechanisms and breeding system, the reproductive biology of E. avicula was studied in south‐eastern Brazil. Epidendrum avicula possess osmophores that produce a citric fragrance at night. The flowers attract Tipulidae flies and several families of microlepidoptera that drink the nectar produced in a tube formed by the adnation of the labellum and column. As is common in Epidendrum, after removing the pollinarium, both crane flies and micro‐moths get trapped by the proboscis, which frightens the insects and inhibits any possible intent to immediately visit another flower. The behavior of the pollinators on flowers, plus the retention of the anther cap by the pollinarium, results in a reduction in the occurrence of geitonogamy. Because E. avicula is self‐incompatible, the consequence of pollinator behavior and the floral mechanisms tend to reduce the pollen loss. As far as we know, this is the first study to report the reproductive biology of a species of Epidendroideae pollinated by crane flies and microlepidoptera. Based on more recent concepts of plant–pollinator interactions, although E. avicula is pollinated by several species belonging to two distinct orders, suggesting an unspecialized pollination system is involved, nectar‐seeking microlepidoptera and Tipulidae flies can be recognized as a single functional group.  相似文献   

20.
  • Orchids are a classic angiosperm model for understanding biotic pollination. We studied orchid species within two species‐rich herbaceous communities that are known to have either hymenopteran or dipteran insects as the dominant pollinators, in order to understand how flower colour relates to pollinator visual systems.
  • We analysed features of the floral reflectance spectra that are significant to pollinator visual systems and used models of dipteran and hymenopteran colour vision to characterise the chromatic signals used by fly‐pollinated and bee‐pollinated orchid species.
  • In contrast to bee‐pollinated flowers, fly‐pollinated flowers had distinctive points of rapid reflectance change at long wavelengths and a complete absence of such spectral features at short wavelengths. Fly‐pollinated flowers also had significantly more restricted loci than bee‐pollinated flowers in colour space models of fly and bee vision alike.
  • Globally, bee‐pollinated flowers are known to have distinctive, consistent colour signals. Our findings of different signals for fly pollination is consistent with pollinator‐mediated selection on orchid species that results from the distinctive features of fly visual systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号