首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global distribution of exotic species is the result of abiotic, biotic and dispersal filtering processes that shape the movement and success of species outside their native range. In this study we aim to understand how these filtering processes drive the fluxes of grass species among regions, the factors that influence which species establish outside of their native range, and where they do so. We used national and subnational checklists of native and introduced grass species to determine the extent to which each region was a source or recipient of exotic grass species. We asked how species traits may distinguish those grass species that have naturalized outside their native range from those that have not, and how environmental conditions are related to the distribution of exotic grass species. We found that exotic grass establishment is shaped by an array of factors including characteristics of regions, traits of species and their interactions. Regions with a longer history of human occupation and larger numbers of native grass species were generally the most important sources of exotic species. Global flows of species were mostly driven by a climate match between the native and exotic ranges, but were also highly asymmetric, with regions with recent human arrival being the major hosts of exotic grass species. Tall, annual and C4 grass species exhibited particularly high probabilities of establishment outside their native range. Despite the idiosyncrasy and stochasticity characteristic of exotic species establishment, this biogeographical analysis revealed important generalities across this large plant group. Our results suggest that grass species that have co-occurred with humans for a longer time may be better adapted to living in anthropogenic landscapes, explaining the global asymmetry in species introductions.  相似文献   

2.
Biological Invasions - Invasive ants are amongst the most destructive and widespread invaders across the globe; they can strongly alter invaded ecosystems and are responsible for the loss of native...  相似文献   

3.
Disentangling the environmental and spatial drivers of biological communities across large scales increasingly challenges modern ecology in a rapidly changing world. Here, we investigate the hierarchical and trait‐based organization of regional and local factors of zooplankton communities at a macroscale of 1240 mountain lakes and ponds spanning western North America (California, USA, to Yukon Territory, Canada). Variation partitioning was used to test the hypothesized importance of climate, connectivity, catchment features, and exotic sportfish to zooplankton beta‐diversity in the context of key functional traits (body size and reproductive dispersal potential) given the pronounced environmental heterogeneity (e.g. thermal gradients), topographic barriers, and legacy of stocked fish in mountainous regions. Dispersal limitation was inferred from multispecies patch connectivity estimates based on nearest and average distances to occupied patches. Environmental heterogeneity best explained community composition as catchment/lake features (morphometry, land cover, and lithology) collectively captured greater variation than did climate (temperature, precipitation, and solar radiation), local stocking, or connectivity; however, single climatic variables captured the most variation individually. Macrospatial variation by larger obligate sexual species was better explained than that by smaller cyclically parthenogenetic asexual species. Our results provide several novel insights into the macroecology of zooplankton of the North American Cordillera, demonstrating their stronger associations to climatically driven aquatic‐terrestrial habitat coupling than dynamics arising from introduced salmonids, human land‐use, or species dispersal. These findings highlight the clear and important role of these communities as bioindicators of the limnological impacts of accelerating rates of climate change, as their responses appear relatively not confounded by local human perturbations or dispersal limitation.  相似文献   

4.
Interactions between exotic plants and animals can play a major role in determining success or failure of plant introductions. Seed predation has been seen as important in explaining biotic resistance to plant invasion, but this hypothesis has rarely been tested. We studied seed predation on exotic forest plants on an island in Patagonia, Argentina where 43 pine species, including 60% of the world’s known invasive Pinaceae, were introduced ca. 80 years ago, but where exotics attain relatively high densities only near the original plantings. To test if seed predation limits exotic conifer establishment in this area, we compared seed predation in areas close to plantations (colonized by exotics) and far from them (not invaded). Seeds of exotics were preferred over seeds of native species, possibly because exotic seeds are bigger. Predation was more intense in areas far from plantations than in areas close to them, substantially reducing the chances of exotic seed establishment. Using automatic cameras, we found that both rodents and birds preyed on exotic seeds. This study suggests that native seed predators can be an important component of biological resistance to plant invasion.  相似文献   

5.
Question Are the patterns of alien conifer (Pinaceae, Cupressaceae) invasions different between continents, and how is invasion success influenced by commercial forestry practices? Location Temperate and subtropical countries and regions (n = 60) from five continents spanning both hemispheres. Methods We used generalized linear mixed models to test how continent identity, region area and use in commercial forestry affect probabilities of Pinaceae and Cupressaceae species to escape following introduction and cumulative logit regression models to assess how these predictors affect the likelihood that a species becomes naturalized or invasive. Results Sixty Pinaceae of a global total of 232 and 26 Cupressaceae of a total of 142 species have escaped from cultivation across the study regions examined. Average numbers of both alien Pinaceae and Cupressaceae species per region were highest in Oceania, followed by Africa. Moreover, the probability of alien Cupressaceae and Pinaceae becoming naturalized or invasive was particularly high in these two continents. For both families, species used in commercial forestry have a significantly higher probability of escape than those which are only introduced for ornamental or other purposes. In the case of Pinaceae, forestry species also become naturalized or invasive more frequently than non‐forestry species, while no such effect was detectable for Cupressaceae. Conclusions We found that non‐native conifers are more likely to escape from cultivation, naturalize and turn into invasive weeds on the continents of the Southern Hemisphere. In addition to this biogeographic signal, introduction effort strongly determines the behaviour of introduced Pinaceae, and less so, Cupressaceae. A clear conflict exists between the economic benefits of conifer forestry and the risks to the environment from invasions. Future expansion of commercial forestry should address spatial planning to ecosystems vulnerable to invasion and adopt comprehensive risk assessment procedures.  相似文献   

6.
Callitris is Australia’s most successful and drought tolerant conifer genus. Callitris species are distributed across a huge geographical range from rainforest to arid zones, and hence they provide a rare opportunity to view plant growth trends across the continent. Here, we make a continental-scale examination of how climate influences basal diameter growth in Callitris. We sampled a total of five species but focused effort (23 of 28 samples) on the most widespread species, C. columellaris. Cores from a total of 23 trees were sampled from 15 sites that spanned a gradient in mean annual rainfall from 225 to 2117 mm and mean annual temperature from 11.5 to 28.2°C. Ring production is not annual across much of the distribution of the genus, so 14C-AMS dating was used to establish the frequency of ring production for each core. Ring width, tracheid lumen diameter and number of tracheids per ring were also measured on each core. Ring production was close to annual at mesic sites with reliable alternation of rainfall or temperature regimes but was more erratic elsewhere. For C. columellaris, ring width significantly increased with mean annual rainfall (r 2 = 0.49) as a result of wider and more tracheids per ring. For this species tracheid lumen diameter was correlated with annual rainfall (r 2 = 0.61), with a threefold increase from the driest to the wettest sites, lending support to the hypothesis that conifers growing at drier sites will have narrow lumen diameters to maximise mechanical strength of the xylem.  相似文献   

7.
Ascertaining whether invasive species are the drivers or passengers of ecological change is crucial for restoration and for optimizing management. Smith et al. (this issue) show that failed control of an invasive forb limits restoration, regardless of whether native species are actively planted. Management‐based experiments that target the complementary processes of invasion and community assembly can help optimize restoration.  相似文献   

8.
9.
The diversity of parasite species exploiting a host population varies substantially among different host species. This review summarizes the main predictions generated by the two main theoretical frameworks used to study parasite diversity. The first is island biogeography theory, which predicts that host features, such as body size, that are associated with the probability of colonization by new parasite species, should covary with parasite species richness. The second predictive framework derives from epidemiological modelling; it predicts that host species with features that increase parasite transmission success among host individuals, such as high population density, will sustain a greater diversity of parasite species. A survey of comparative studies of parasite diversity among fish and mammalian host species finds support for most of the predictions derived from the above two theoretical perspectives. This empirical support, however, is not universal. It is often qualitative only, because quantitative predictions are lacking. Finally, the amount of variance in parasite diversity explained by host features is generally low. To move forward, the search for the determinants of parasite diversity will need to rely less on theories developed for free-living organisms, and more on its own set of hypotheses incorporating specific host–parasite interactions such as immune responses.

Zusammenfassung

Die Diversität der Parasitenarten, die eine Wirtspopulation nutzen, variiert erheblich zwischen verschiedenen Wirtsarten. Dieser Review fasst die hauptsächlichen Vorhersagen zusammen, die von den zwei wichtigsten theoretischen Rahmenkonzepten hervorgebracht werden, die für die Untersuchung der Parasitendiversität genutzt werden. Die erste ist die Inselbiogeografie, die vorhersagt, dass Wirtsmerkmale, die mit der Besiedlungswahrscheinlichkeit durch einen neuen Parasiten verknüpft sind, wie beispielsweise die Körpergröße, mit dem Artenreichtum der Parasiten kovariieren sollten. Das zweite Rahmenkonzept ist aus der epidemiologischen Modellierung abgeleitet. Es sagt vorher, dass Wirtsarten mit Merkmalen, die den Übertragungserfolg der Parasiten zwischen den Wirtsindividuen erhöhen, wie beispielsweise hohe Populationsdichten, eine größere Diversität von Parasitenarten erhalten werden. Eine Begutachtung von vergleichenden Untersuchungen über Parasitendiversität bei Fischen und Säugetieren als Wirtsarten unterstützt die meisten der Vorhersagen, die von den oben genannten zwei theoretischen Perspektiven abgeleitet sind. Diese empirische Bestätigung ist jedoch nicht allgemein gültig. Sie ist häufig nur qualitativ, da quantitative Vorhersagen fehlen. Schließlich ist der Anteil der Varianz in der Parasitendiversität, der durch die Wirtsmerkmale erklärt wird, normalerweise gering. Um vorwärts zu kommen muss sich die Suche nach den bestimmenden Faktoren der Parasitendiversität weniger auf Theorien, die für freilebende Organismen entwickelt wurden, und mehr auf ihre eigene Menge von Hypothesen verlassen, die spezifische Wirt-Parasit-Interaktionen, wie beispielsweise Immunreaktionen, mit einbeziehen.  相似文献   

10.
11.
12.
Up to 6,800 plant species endemic to oceanic islands are highly threatened with extinction. Although habitat destruction and fragmentation have greatly contributed to this, it is generally recognised that invasive alien species currently pose the single most important threat to island plants. Most studies exploring the role of novel interspecific interactions in driving declines of island plants, focus on threats mediated by animals, be it direct (e.g. browsing, seed predation, mutualism disruption) or indirect (e.g. extinction of seed dispersal or pollination mutualists). Relatively few studies have investigated the specific role of plant-plant interactions, particularly in-situ. We studied a threatened island endemic plant in rapid decline to evaluate the short (1–2 years) and medium-term (about 1–2 decades) influence of invasive alien plants (IAPs) on individuals and a variety of proxies of plant fitness. We compared mortality of traceable individuals that were recorded 12–20 years previously between habitats that are invaded with IAPs and habitats where IAPs are absent, or have been removed decades ago. We also carried out an in-situ manipulative experiment using 14 randomly chosen plants from around which IAPs were removed, paired with controls, at two sites. Canopy cover change before and after IAPs’ removal was quantified along with above ground biomass of IAPs removed for use as potential explanatory variables of change in proxies of plant fitness. Ten branches were randomly selected per plant and branch dynamics, leaves’ sizes and reproductive structure production were monitored quarterly for two years. Over the medium term, plant mortality was recorded only in presence of IAPs (X2 = 4.80, df = 1, p < 0.05). Over the short term, at the plant level, IAPs’ removal triggered overall weak to moderate improvements in the number of surviving and new branches as well as change in number of branches at one of the sites. At the leaf and branch levels, we found weak evidence for positive effects of IAPs removal on surviving leaves, flower buds produced and difference in leaf surface area per branch in one site. We therefore provide some experimental evidence of negative effects of alien plants on overall fitness of the threatened species in-situ presumably through competitive interactions. We posit that these effects were found to be weak to moderate due to the short experimental period over which they could develop (1–2 years). Overall, IAPs stand out as the most severe threat from among all documented threats to the species, for being the only one capable of causing mortality of adult plants. Results hence highlight island plants’ vulnerability to IAPs, and how their timely control would improve the survival and fitness of threatened plants, even at the scale of single individuals. Such a strategy could be more often employed. Our study stresses on prioritising IAPs’ control for rescuing long-lived threatened plants that grow in habitats invaded by alien plants (itself a very common situation on oceanic islands) before addressing other subtler, slower-acting threats, like disrupted pollination or seed dispersal mutualisms, florivory or seed predation.  相似文献   

13.
There is a concern of the spread of introduced trout Salmo trutta and Oncorhynchus mykiss which might have potential effects on native fish species in the Himalaya. We present the first assessment of current habitat expansion of introduced trout induced by environmental drivers and posing threats to the local fish diversity. Maximum Entropy (MaxEnt) model was used and overlaid with presence-only data onto bioclimatic and environmental layers to characterize the conditions most suitable for the habitat expansion of trout. Mean AUC value for S. trutta was 0.919 and 0.881 for O. mykiss respectively showing that the MaxEnt model was highly accurate and statistically significant. The precipitation of driest quarter (Bio_17) alone accounted for 71.4% habitat expansion of S. trutta across rivers’ length and 61.1% in the case of O. mykiss. The Jackknife test of different environmental variable particularly Bio_17 and the coldest quarter (Bio_19) depicted their potential role in habitat expansion. The occurrences of trout in the Himalayan streams predicted trade-offs between few environmental variables and habitat expansion. The findings suggested that habitat expansion of trout was induced by identified environmental drivers impacting the array of biological and ecological integrity in the new geographic spaces concerning trout invasion.  相似文献   

14.
The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores.  相似文献   

15.
We analysed the pattern of covariation of European spider species richness with various environmental variables at different scales. Four layers of perception ranging from single investigation sites to the whole European continent were selected. Species richness was determined using published data from all four scales. Correlation analyses and stepwise multiple linear regression were used to relate richness to topographic, climatic and biotic variables. Up to nine environmental variables were included in the analyses (area, latitude, elevation range, mean annual temperature, local variation in mean annual temperature, mean annual precipitation, mean July temperature, local variation in mean July temperature, plant species richness). At the local and at the continental scale, no significant correlations with surface area were found, whereas at the landscape and regional scale, surface area had a significant positive effect on species richness. Factors that were positively correlated with species richness at both broader scales were plant species richness, elevation range, and specific temperature variables (regional scale: local variation in mean annual, and mean July temperature; continental scale: mean July temperature). Latitude was significantly negatively correlated with the species richness at the continental scale. Multiple models for spider species richness data accounted for up to 77% of the total variance in spider species richness data. Furthermore, multiple models explained variation in plant species richness up to 79% through the variables mean July temperature and elevation range. We conclude that these first continental wide analyses grasp the overall pattern in spider species richness of Europe quite well, although some of the observed patterns are not directly causal. Climatic variables are expected to be among the most important direct factors, although other variables (e.g. elevation range, plant species richness) are important (surrogate) correlates of spider species richness.  相似文献   

16.
Hummingbirds (Family Trochilidae) are key pollinators in several biodiversity hotspots, including the California Floristic Province in North America. Relatively little is known about how hummingbird diets change throughout the year, especially with regard to how migratory hummingbirds affect resident hummingbirds at stopover sites. In this study, we examine how hummingbird species, migratory status, sex, geographic region and local plant diversity influence floral resource use before, during, and after an influx of migratory hummingbirds (primarily Rufous hummingbirds, Selasphorus rufus) across California. We expected distinct floral resource use based upon species’ migratory status (resident vs. migrant), sex, sampling period, and geographic region. We employed DNA metabarcoding to detect plant DNA in hummingbird fecal samples to analyze diet diversity, composition, overlap, and interaction networks. We found significant effects of sex, sampling period, and migratory status on the alpha and beta diversity of plant taxa present in fecal samples. Analyses of Anna's hummingbirds (Calypte anna) alone revealed that female fecal samples contained higher plant species richness. In addition to hummingbird-pollinated plants, fecal samples also contained non-ornithophilous plants and species of agricultural importance. Diet overlap and plant-pollinator network analyses revealed high overlap in plant taxa used between hummingbird species, and networks were more connected, less nested, and less specialized than null models. DNA metabarcoding is minimally invasive and provides a detailed view of hummingbird diet, permitting large-scale studies. Insights into hummingbird diets are especially valuable given the logistical difficulties of directly observing floral visitation and foraging across broad temporal and spatial scales.  相似文献   

17.
Sexual size dimorphism (SSD) is a well‐documented phenomenon in both plants and animals; however, the ecological and evolutionary mechanisms that drive and maintain SSD patterns across geographic space at regional and global scales are understudied, especially for reptiles. Our goal was to examine geographic variation of turtle SSD and to explore ecological and environmental correlates using phylogenetic comparative methods. We use published body size data on 135 species from nine turtle families to examine how geographic patterns and the evolution of SSD are influenced by habitat specialization, climate (annual mean temperature and annual precipitation) and climate variability, latitude, or a combination of these predictor variables. We found that geographic variation, magnitude and direction of turtle SSD are best explained by habitat association, annual temperature variance and annual precipitation. Use of semi‐aquatic and terrestrial habitats was associated with male‐biased SSD, whereas use of aquatic habitat was associated with female‐biased SSD. Our results also suggest that greater temperature variability is associated with female‐biased SSD. In contrast, wetter climates are associated with male‐biased SSD compared with arid climates that are associated with female‐biased SSD. We also show support for a global latitudinal trend in SSD, with females being larger than males towards the poles, especially in the families Emydidae and Geoemydidae. Estimates of phylogenetic signal for both SSD and habitat type indicate that closely related species occupy similar habitats and exhibit similar direction and magnitude of SSD. These global patterns of SSD may arise from sex‐specific reproductive behaviour, fecundity and sex‐specific responses to environmental factors that differ among habitats and vary systematically across latitude. Thus, this study adds to our current understanding that while SSD can vary dramatically across and within turtle species under phylogenetic constraints, it may be driven, maintained and exaggerated by habitat type, climate and geographic location.  相似文献   

18.
Here we consider evolutionary patterns writ large in the fossil record. We argue that Darwin recognized but downgraded or de-emphasized several of these important patterns, and we consider what a renewed emphasis on these patterns can tell us about the evolutionary process. In particular, one of the key patterns we focus on is the role geographic isolation plays in fomenting evolutionary divergence; another one of the key patterns is stasis of species; the final pattern is turnovers, which exist at several hierarchical scales, including regional ecosystem replacement and pulses of speciation and extinction. We consider how each one of these patterns are related to the dynamic of changing ecological and environmental conditions over time and also investigate their significance in light of other concepts including punctuated equilibria and hierarchy theory. Ultimately, we tie each of these patterns into a framework involving macroecological dynamics and the important role environmental change plays in shaping evolution from the micro- to macroscale.  相似文献   

19.
Macroecological patterns are found in animals and plants, but also in micro‐organisms. Macroecological and biogeographic distribution patterns in marine Archaea, however, have not been studied yet. Ammonia‐oxidizing Archaea (AOA) show a bipolar distribution (i.e. similar communities in the northernmost and the southernmost locations, separated by distinct communities in the tropical and gyral regions) throughout the Atlantic, detectable from epipelagic to upper bathypelagic layers (<2000 m depth). This tentatively suggests an influence of the epipelagic conditions of organic matter production on bathypelagic AOA communities. The AOA communities below 2000 m depth showed a less pronounced biogeographic distribution pattern than the upper 2000 m water column. Overall, AOA in the surface and deep Atlantic waters exhibit distance–decay relationships and follow the Rapoport rule in a similar way as bacterial communities and macroorganisms. This indicates a major role of environmental conditions in shaping the community composition and assembly (species sorting) and no, or only weak limits for dispersal in the oceanic thaumarchaeal communities. However, there is indication of a different strength of these relationships between AOA and Bacteria, linked to the intrinsic differences between these two domains.  相似文献   

20.
Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource‐acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root‐trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号