首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spangled perch Leiopotherapon unicolor is considered a rare vagrant in the southern Murray‐Darling Basin, Australia, due to its intolerance of the relatively cool water temperatures that prevail during winter months. This study details 1342 records of the species from 68 locations between 2010 and 2014 outside its accepted ‘core adult range’ following widespread flooding during 2010 and 2011. Although records of the species declined over 2013, L. unicolor remained resident in the southern Murray‐Darling Basin as of April 2014. The species persisted in several locations for three consecutive winters with recruitment documented at two sites. This study represents the first identification of the dispersal of large numbers of L. unicolor into the southern Murray‐Darling Basin, persistence beyond a single winter, and recruitment by the species in habitats south of its recognized ‘core adult range’. Targeted research would determine the potential for predicted environmental changes (artificially warmer drainage wetlands, climate change and greater floodplain connectivity) to facilitate longer term persistence and range expansion by the species in the southern Murray‐Darling Basin.  相似文献   

2.
Aim Climate changes are thought to be responsible for the retreat and eventual extinction of subtropical lauroid species that covered much of Europe and North Africa during the Palaeogene and early Neogene; little is known, however, of the spatial and temporal patterns of this demise. Herein we calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of Laurus were affected by Plio‐Pleistocene climate changes. We also provide predictions of likely range changes resulting from future climatic scenarios. Location The Mediterranean Basin and Macaronesian islands (Canaries, Madeira, Azores). Methods We used a maximum‐entropy algorithm (Maxent) to model the relationship between climate and Laurus distribution over time. The models were fitted both to the present and to the middle Pliocene, based on fossil records. We employed climatic reconstructions for the mid‐Pliocene (3 Ma), the Last Glacial Maximum (21 ka) and a CO2‐doubling future scenario to project putative species distribution in each period. We validated the model projections with Laurus fossil and present occurrences. Results Laurus preferentially occupied warm and moist areas with low seasonality, showing a marked stasis of its climatic niche. Models fitted to Pliocene conditions successfully predicted the current species distribution. Large suitable areas existed during the Pliocene, which were strongly reduced during the Pleistocene, but humid refugia within the Mediterranean Basin and Macaronesian islands enabled long‐term persistence. Future climate conditions are likely to re‐open areas suitable for colonization north of the current range. Main conclusions The climatic requirements of Laurus remained virtually unchanged over the last 3 Myr. This marked niche conservatism imposed largely deterministic range dynamics driven by climate conditions. This species's relatively high drought tolerance might account for the survival of Laurus in continental Europe throughout the Quaternary whilst other Lauraceae became extinct. Climatic scenarios for the end of this century would favour an expansion of the species's range towards northern latitudes, while severely limiting southern populations due to increased water stress.  相似文献   

3.
Thick‐billed Parrots (Rhynchopsitta pachyrhyncha) and Maroon‐fronted Parrots (Rhynchopsitta terrisi) are the only parrots in Mexico found in high‐elevation coniferous forests. Both species are critically endangered due to logging, and climate change is expected to further reduce their available habitat. Our objectives were to assess the present and future availability of a suitable habitat for these parrots using ecological niche models. Future climatic scenarios were estimated by overlaying the present distributions of these parrots on maps of projected biome distributions generated using a North American vegetation model. Our climatic scenarios revealed that the distribution of key habitats for both parrots will likely be affected as the climate becomes more suitable for xeric biomes. The climate associated with coniferous forests in the current range of Maroon‐fronted Parrots is predicted to disappear by 2090, and the climate associated with the key coniferous habitats of Thick‐billed Parrots may contract. However, our results also indicate that suitable climatic conditions will prevail for the high‐elevation coniferous biomes where Thick‐billed Parrots nest. The degree to which both species of parrots will be able to adapt to the new scenarios is uncertain. Some of their life history traits may allow them to respond with a combination of adaptive and spatial responses to climatic change and, in addition, suitable climatic conditions will prevail in some portions of their ranges. Actions needed to ensure the conservation of these parrots include strict control of logging and integration of rapid response teams for fire management within the potential foraging ranges of nesting pairs. A landscape with a greater proportion of restored forests would also aid in the recovery of current populations of Thick‐billed and Maroon‐fronted parrots and facilitate their responses to climate change.  相似文献   

4.
Populus tremuloides is the widest‐ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome‐wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics of P. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal–Cascades (cluster 1), east‐slope Cascades–Sierra Nevadas–Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of the P. tremuloides range, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the “stable‐edge hypothesis” that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited “trailing‐edge” dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the “inland dispersal hypothesis” predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific‐coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable‐edge, refugial locations, and postglacial expansion within P. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific‐coastal genetic lineage of quaking aspen.  相似文献   

5.
The distribution of the nine banded armadillo (Dasypus novemcinctus), the only species in the family Dasypodidae found in the USA, has expanded greatly since the species was first recorded in southern Texas in 1849. Currently, the range of D. novemcinctus includes 15 states in the USA. Previous studies on the geographical expansion of this species, based on physiological experiments and distribution surveys, revealed a possible western moisture limit, a northern temperature limit, and potential north‐eastward range expansion in the USA. We applied an ecological niche modelling approach and produced a potential distribution map of D. novemcinctus with comparable western (102 °W) and northern (40 °N) limits, and confirmed the possibility of further north‐east range expansion to climatically suitable areas in the USA.  相似文献   

6.
Climate may influence the distribution and abundance of a species through a number of demographic and ecological processes, but the proximate drivers of such responses are only recently being identified. The Ethiopian Bush‐crow Zavattariornis stresemanni is a starling‐like corvid that is restricted to a small region of southern Ethiopia. It is classified as Endangered in the IUCN Red List of globally threatened species. Previous work suggested that this range restriction is almost perfectly defined by a climate envelope that is cooler than surrounding areas, but the proximate mechanism remains unexplained. The heavily altered habitats which the species inhabits are widespread across Africa, and recent work has shown that the Bush‐crow is behaviourally adaptable and has a catholic diet. We assess whether its enigmatic distribution can be explained by behavioural responses to the higher temperatures that surround its current range. Using environmental niche models and field observations of thermally mediated behaviour, we compare the range restriction and behavioural thermoregulation of the Ethiopian Bush‐crow with those of two sympatric control species that are similar in size and ecology, but have much larger ranges that include hotter environments. White‐crowned Starling Lamprotornis albicapillus and Superb Starling L. superbus occupy similar habitats to the Ethiopian Bush‐crow and all three frequently forage together. We found that the Bush‐crow's range is limited primarily by temperature, with a secondary effect of dry season rainfall, whereas the ranges of the two starling species are better predicted by wet season rainfall alone. Bush‐crows exhibited panting behaviour and moved into the shade of trees at significantly lower ambient temperatures than did the starlings, and their food intake declined more steeply with increasing temperature. These results indicate that the limited geographical range of the Bush‐crow reflects an inability to cope with higher temperatures. This suggests that a species' response to climate change might not be easily predicted by its ecological generalism, and may represent an inherited debt from its evolutionary history.  相似文献   

7.
Analyses of the interspecific differences in macropod home range size suggest that habitat productivity exerts a greater influence on range size than does body mass. This relationship is also apparent within the rock‐wallaby genus. Lim reported that yellow‐footed rock‐wallabies (Petrogale xanthopus xanthopus) inhabiting the semi‐arid Flinders Ranges (South Australia) had a mean home range of 170 ha. While consistent with the hypothesis that species inhabiting less productive habitats will require larger ranges to fulfil their energetic requirements, the ranges reported by Lim were considerably larger than those observed for heavier sympatric macropods. The aim of the current study was to document the home range dynamics of P. x. celeris in central‐western Queensland and undertake a comparison with those reported for their southern counterparts. Wallaby movements were monitored at Idalia National Park, between winter 1992 and winter 1994. Male foraging ranges (95% fixed kernel; 15.4 ha, SD = ±7.8 ha) were found to be significantly larger than those of female wallabies (11.3 ha, SD = ±4.9 ha). Because of varying distances to the wallabies' favoured foraging ground (i.e. an adjacent herb field), the direction in which the wallabies moved to forage also significantly affected range size. Mean home range size was estimated to be 23.5 ha (SD = ±15.2 ha; 95% fixed kernel) and 67.5 ha (SD = ±22.4 ha; 100% minimum convex polygon). The discrepancy between these two estimates resulted from the exclusion of locations, from the 95% kernel estimates, when the wallabies moved to a water source 1.5 km distant from the colony site. The observed foraging and home ranges approximated those that could be expected for a macropod inhabiting the semi‐arid zone (i.e. 2.4 times larger‐than‐predicted from body mass alone). Possible reasons for the disparity between the current study and that of Lim are examined.  相似文献   

8.
Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species‐specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade‐offs in functional traits, and local‐scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade‐off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common.  相似文献   

9.
Xin Wang  Anthony D. Fox  Peihao Cong  Lei Cao 《Ibis》2013,155(3):576-592
More than 90% of the Lesser White‐fronted Geese Anser erythropus in the Eastern Palearctic flyway population winter at East Dongting Lake, China. To explain this restricted distribution and to understand better the winter feeding ecology and habitat requirements of this poorly known species, we assessed their food availability, diet and energy budgets at this site through two winters. Lesser White‐fronted Geese maintained a positive energy budget when feeding on above‐ground green production of Eleocharis and Alopecurus in recessional grasslands in autumn and spring to accumulate fat stores. Such food was severely depleted by late November and showed no growth in mid‐winter. Geese fed on more extensive old‐growth Carex sedge meadows in mid‐winter where they were in energy deficit and depleted endogenous fat stores. Geese failed to accumulate autumn fat stores in one year when high water levels prevented the Geese from using recessional grassland feeding areas. Fat stores remained lower throughout that winter and Geese left for breeding areas later in spring than in the previous year, perhaps reflecting the need to gain threshold fat stores for migration. Sedge meadows are widespread at other Yangtze River floodplain wetlands, but recessional grasslands are rare and perhaps restricted to parts of East Dongting Lake, which would explain the highly localized distribution of Lesser White‐fronted Geese in China and their heavy use of these habitats at this site. Sympathetic management of water tables is essential to maintain the recessional grasslands in the best condition for Geese. Regular depletion of fat stores whilst grazing sedge meadows in mid‐winter also underlines the need to protect the species from unnecessary anthropogenic disturbances that enhance energy expenditure. The specialized diet of the Lesser White‐fronted Goose may explain its highly restricted winter distribution and global rarity.  相似文献   

10.
Local adaptation seems to be one of the causes of variation in melanin‐based colors in bird plumages, related mainly to the heterogeneity of the environmental conditions along the distribution of a species. Based on comparisons of genetic (mtDNA sequences), ecological (niche models), and quantitative colorimetric data, we explored variation in plumage coloration of the white‐throated thrush Turdus assimilis, a Mesoamerican species whose dorsal color varies from brown (northern and central Mexico) to dark gray (southern Mexico and Central America). Our results suggest the existence of two major patterns of coloration in this bird, which are congruent with the genetic structure, and comparisons of ecological niche models showed that population's niches were more similar than expected by chance, suggesting that color variation in plumage of T. assimilis is not consequence of local adaptation to different environmental conditions. Our results also showed that a greater geographic distance between populations is correlated with greater colorimetric differences, suggesting that color variation in T. assimilis may be consequence of historical isolation.  相似文献   

11.
Aim We examine the range expansion/contraction dynamics during the last glacial cycle of the late‐successional tropical rain forest conifer Podocarpus elatus using a combination of modelling and molecular marker analyses. Specifically, we test whether distributional changes predicted by environmental niche modelling are in agreement with (1) the glacial maximum contractions inferred from the southern fossil record, and (2) population genetic‐based estimates of range disjunctions and demographic dynamics. In addition, we test whether northern and southern ranges are likely to have experienced similar expansion/contraction dynamics. Location Eastern Australian tropical and subtropical rain forests. Methods Environmental niche modelling was completed for three time periods during the last glacial cycle and was interpreted in light of the known palynology. We collected 109 samples from 32 populations across the entire range of P. elatus. Six microsatellite loci and Bayesian coalescence analysis were used to infer population expansion/contraction dynamics, and five sequenced loci (one plastid and four nuclear) were used to quantify genetic structure/diversity. Results Environmental niche modelling suggested that the northern and southern ranges of P. elatus experienced different expansion/contraction dynamics. In the northern range, the habitat suitable for P. elatus persisted in a small refugial area during the Last Glacial Maximum (LGM, 21 ka) and then expanded during the post‐glacial period. Conversely, in the south suitable habitat was widespread during the LGM but subsequently contracted. These differential dynamics were supported by Bayesian analyses of the population genetic data (northern dispersal) and are consistent with the greater genetic diversity in the south compared with the north. A contact zone between the two genetically divergent groups (corresponding to the Macleay Overlap Zone) was supported by environmental niche modelling and molecular analyses. Main conclusions The climatic fluctuations of the Quaternary have differentially impacted the northern and southern ranges of a broadly distributed rain forest tree in Australia. Recurrent contraction/expansion cycles contributed to the genetic distinction between northern and southern distributions of P. elatus. By combining molecular and environmental niche modelling evidence, this unique study undermines the general assumption that broadly distributed species respond in a uniform way to climate change.  相似文献   

12.
Recent range shifts towards higher latitudes have been reported for many animals and plants in the northern hemisphere, and are commonly attributed to changes in climate. Relatively little is known about such changes in the southern hemisphere, although it has been suggested that latitudinal distributions of the fruit‐bats Pteropus alecto and Pteropus poliocephalus changed during the 20th century in response to climate change in eastern Australia. However, historical changes in these species distributions have not been examined systematically. In this study we obtained historical locality records from a wide range of sources (including banding and museum records, government wildlife databases and unpublished records), and filtered them for reliability and spatial accuracy. The latitudinal distribution of each species was compared between eight time‐periods (1843–1920, 1921–1950, five 10‐year intervals between 1950 and 2000, and 2001–2007), using analyses of both the filtered point data (P. alecto 870 records, P. poliocephalus 2506) and presence/absence data within 50 × 50 km grid cells. The results do not support the hypothesis that either species range is shifting in a manner driven by climate change. First, neither the northern or southern range limits of P. poliocephalus (Mackay, Queensland and Melbourne, Victoria respectively) changed over time. Second, P. alecto's range limit extended southward by 1168 km (approximately 10.5 degrees latitude) during the twentieth century (from approximately Rockhampton, Queensland to Sydney, New South Wales). Within this zone of southward expansion (25–29°S), the percentage of total records that were P. alecto increased from 8% prior to 1950 to 49% in the early 2000s, and local count data showed that its abundance increased from several hundred to more than 10 000 individuals at specific roost sites, as range expansion progressed. Pteropus alecto expanded southward at about 100 km/decade, compared with the 10–26 km/decade rate of isotherm change, and analyses of historical weather data show that the species consequently moved into recently‐colder regions than it had previously occupied. Neither climate change nor habitat change could provide simple explanations to explain P. alecto's observed rapid range shift. More generally, climate change should not be uncritically inferred as a primary driver of species range shifts without careful quantitative analyses.  相似文献   

13.
Furcraea foetida (Asparagaceae) is a native plant of Central America and northern South America but there is no information about its country of origin. The species was introduced into Brazil and is now considered invasive, particularly in coastal ecosystems. To date, nothing is known about the environmental factors that constrain its distribution and there is only inconclusive information about its location of origin. We used reciprocal distribution models (RDM) to assess invasion risk of F. foetida across Brazil and to identify source regions in its native range. We also tested the niche conservatism hypothesis using Principal Components Analyses and statistical tests of niche equivalency and similarity between its native and invaded ranges. For RDM analysis, we built two models using maximum entropy, one using records in the native range to predict the invaded distribution (forward‐Ecological Niche Model or forward‐ENM) and one using records in the invaded range to predict the native distribution (reverse‐ENM). Forward‐ENM indicated invasion risk in the Cerrado region and the innermost region of the Atlantic Forest, however, failed to predict the current occurrence in southern Brazil. Reverse‐ENM supported an existing hypothesis that F. foetida originated in the Orinoco river basin, Amazon basin and Caribbean islands. Prediction errors in the RDM and multivariate analysis indicated that the species expanded its realized niche in Brazil. The niche similarity test further suggested that the niche differences are because of differences in habitat availability between the two ranges, not because of evolutionary changes. We hypothesize that physiological pre‐adaptation (especially, the crassulacean acid metabolism), human‐driven propagule pressure and high competitive ability are the main factors determining the current spatial distribution of the species in Brazil. Our study highlights the need to include F. foetida in plant invasion monitoring programs, especially in priority conservation areas where the species has still not been introduced.  相似文献   

14.

Aim

Taxon co‐occurrence analysis is commonly used in ecology, but it has not been applied to range‐wide distribution data of partly allopatric taxa because existing methods cannot differentiate between distribution‐related effects and taxon interactions. Our first aim was to develop a taxon co‐occurrence analysis method that is also capable of taking into account the effect of species ranges and can handle faunistic records from museum databases or biodiversity inventories. Our second aim was to test the independence of taxon co‐occurrences of rock‐dwelling gastropods at different taxonomic levels, with a special focus on the Clausiliidae subfamily Alopiinae, and in particular the genus Montenegrina.

Location

Balkan Peninsula in south‐eastern Europe (46N–36N, 13.5E–28E).

Methods

We introduced a taxon‐specific metric that characterizes the occurrence probability at a given location. This probability was calculated as a distance‐weighted mean of the taxon's presence and absence records at all sites. We applied corrections to account for the biases introduced by varying sampling intensity in our dataset. Then we used probabilistic null‐models to simulate taxon distributions under the null hypothesis of no taxon interactions and calculated pairwise and cumulated co‐occurrences. Independence of taxon occurrences was tested by comparing observed co‐occurrences to simulated values.

Results

We observed significantly fewer co‐occurrences among species and intra‐generic lineages of Montenegrina than expected under the assumption of no taxon interaction.

Main conclusions

Fewer than expected co‐occurrences among species and intra‐generic clades indicate that species divergence preceded niche partitioning. This suggests a primary role of non‐adaptive processes in the speciation of rock‐dwelling gastropods. The method can account for the effects of distributional constraints in range‐wide datasets, making it suitable for testing ecological, biogeographical, or evolutionary hypotheses where interactions of partly allopatric taxa are in question.  相似文献   

15.
Sister species that diverged in allopatry in similar environments are expected to exhibit niche conservatism. Using ecological niche modeling and a multivariate analysis of climate and habitat data, I test the hypothesis that the Bicknell's Thrush (Catharus bicknelli) and Gray‐cheeked Thrush (C. mimimus), sister species that breed in the North American boreal forest, show niche conservatism. Three tree species that are important components of breeding territories of both thrush species were combined with climatic variables to create niche models consisting of abiotic and biotic components. Abiotic‐only, abiotic+biotic, and biotic‐only models were evaluated using the area under the curve (AUC) criterion. Abiotic+biotic models had higher AUC scores and did not over‐project thrush distributions compared to abiotic‐only or biotic‐only models. From the abiotic+biotic models, I tested for niche conservatism or divergence by accounting for the differences in the availability of niche components by calculating (1) niche overlap from ecological niche models and (2) mean niche differences of environmental values at occurrence points. Niche background similarity tests revealed significant niche divergence in 10 of 12 comparisons, and multivariate tests revealed niche divergence along 2 of 3 niche axes. The Bicknell's Thrush breeds in warmer and wetter regions with a high abundance of balsam fir (Abies balsamea), whereas Gray‐cheeked Thrush often co‐occurs with black spruce (Picea mariana). Niche divergence, rather than conservatism, was the predominant pattern for these species, suggesting that ecological divergence has played a role in the speciation of the Bicknell's Thrush and Gray‐cheeked Thrush. Furthermore, because niche models were improved by the incorporation of biotic variables, this study validates the inclusion of relevant biotic factors in ecological niche modeling to increase model accuracy.  相似文献   

16.
Understanding movement of individuals between sites is necessary to quantify emigration and immigration, yet previous analyses exploring sex biases in site fidelity among birds have not evaluated remigration (the return of marked birds that moved to alternative areas from the site at which they were marked). Using novel Bayesian multistate models, we tested whether between‐winter emigration, remigration and survival rates were sex‐biased among 851 Greenland White‐fronted Geese Anser albifrons flavirostris marked at Wexford, Ireland. We found no evidence for sex biases in emigration, remigration or survival. Thus, sex biases in winter site fidelity do not occur in any form in this population; these techniques for modelling sex‐biased movement will be useful for a better understanding of site fidelity and connectivity in other marked animal populations.  相似文献   

17.
A major uncertainty in automated radio‐telemetry studies of small birds is the detection range of receiving antennas. We compared simultaneous daytime detections (± 30 s) by automated and manual radio‐telemetry to assess detection probability and the proportion of transmissions detected for birds on migratory stopover as a function of distance, foraging guild (Black‐throated Blue Warblers, Setophaga caerulescens, and Yellow‐rumped Warblers, Dendroica coronata coronata, represented mid‐canopy foliage gleaners and White‐throated Sparrows, Zonotrichia albicollis, represented a ground forager), habitat type, meteorological variables, tower antenna number (1–4), and the position of a bird relative to the receiving antenna's bearing (offset angle). Our study was conducted at a migratory stopover site in southern Ontario, Canada. Most detections were in dense to sparse forest, and all individuals were within 1.03 km of the automated receiving station. Daily detection probability was near 100% for both foraging guilds. However, within 30 s before and after a manual radio‐telemetry location was made, detection probability and the proportion of transmissions detected by automated radio‐telemetry declined with distance, was higher for warblers than sparrows, and was lowest for 90° offset angles. Our results suggest that when research goals do not require detections with high temporal frequency, e.g., estimation of departure date or daily departure probability, our study design had an effective detection range of at least 1 km. However, where temporal precision is required, e.g., to investigate movements and changes in activity levels during stopover, detection range was ~300 m for ground‐foraging sparrows and 600 m for mid‐canopy foraging warblers, which is much lower than the presumed detection range of antennas under optimal conditions (15 km). This corresponds to a spatial area of coverage for forest‐dwelling birds of ~0.3–1.1 km2. Our results suggest that to optimally configure an automated radio‐telemetry array at the regional scale, investigators should carefully consider detection range and its underlying covariates, including species type, the habitat matrix, and the orientation of antennas relative to preferred habitat.  相似文献   

18.
Insights into the causal mechanisms that limit species distributions are likely to improve our ability to anticipate species range shifts in response to climate change. For species with complex life histories, a mechanistic understanding of how climate affects different lifecycle stages may be crucial for making accurate forecasts. Here, we use mechanistic niche modeling (NicheMapR) to derive “proximate” (mechanistic) variables for tadpole, juvenile, and adult Rana temporaria. We modeled the hydroperiod, and maximum and minimum temperatures of shallow (30 cm) ponds, as well as activity windows for juveniles and adults. We then used those (“proximate”) variables in correlative ecological niche models (Maxent) to assess their role in limiting the species’ current distribution, and to investigate the potential effects of climate change on R. temporaria across Europe. We further compared the results with a model based on commonly used macroclimatic (“distal”) layers (i.e., bioclimatic layers from WorldClim). The maximum temperature of the warmest month (a macroclimatic variable) and maximum pond temperatures (a mechanistic variable) were the most important range‐limiting factors, and maximum temperature thresholds were consistent with the observed upper thermal limit of R. temporaria tadpoles. We found that range shift forecasts in central Europe are far more pessimistic when using distal macroclimatic variables, compared to projections based on proximate mechanistic variables. However, both approaches predicted extensive decreases in climatic suitability in southern Europe, which harbors a significant fraction of the species’ genetic diversity. We show how mechanistic modeling provides ways to depict gridded layers that directly reflect the microenvironments experienced by organisms at continental scales, and to reconstruct those predictors without extrapolation under novel future conditions. Furthermore, incorporating those predictors in correlative ecological niche models can help shed light on range‐limiting processes, and can have substantial impacts on predictions of climate‐induced range shifts.  相似文献   

19.
Understanding the factors that govern the distribution of species is a central goal of evolutionary ecology. It is commonly assumed that geographic range limits reflect ecological niche limits and that species experience increasingly marginal conditions towards the edge of their ranges. Using spatial data and ecological niche models we tested these hypotheses in Arabidopsis lyrata. Specifically, we asked whether range limits coincide with predicted niche limits in this system and whether the suitability of sites declines towards the edge of the species’ range in North America. We further explored patterns of environmental change towards the edge of the range and asked whether genome‐wide patterns of genetic diversity decline with increasing peripherality and environmental marginality. Our results suggest that latitudinal range limits coincide with niche limits. Populations experienced increasingly marginal environments towards these limits – though patterns of environmental change were more complex than most theoretical models for range limits assume. Genomic diversity declined towards the edge of the species’ range and with increasing distance from the estimated centre of the species’ niche in environmental space, but not with the suitability of sites based on niche model predictions. Thus while latitudinal range limits in this system are broadly associated with niche limits, the link between environmental conditions and genetic diversity (and thus the adaptive potential of populations) is less clear.  相似文献   

20.
A knowledge of intraspecific divergence and range dynamics of dominant forest trees in response to past geological and climate change is of major importance to an understanding of their recent evolution and demography. Such knowledge is informative of how forests were affected by environmental factors in the past and may provide pointers to their response to future environmental change. However, genetic signatures of such historical events are often weak at individual loci due to large effective population sizes and long generation times of forest trees. This problem can be overcome by analysing genetic variation across multiple loci. We used this approach to examine intraspecific divergence and past range dynamics in the conifer Picea likiangensis, a dominant tree of forests occurring in eastern and southern areas of the Qinghai‐Tibet Plateau (QTP). We sequenced 13 nuclear loci, two mitochondrial DNA regions and three plastid (chloroplast) DNA regions in 177 individuals sampled from 22 natural populations of this species, and tested the hypothesis that its evolutionary history was markedly affected by Pliocene QTP uplifts and Quaternary climatic oscillations. Consistent with the taxonomic delimitation of the three morphologically divergent varieties examined, all individuals clustered into three genetic groups with intervariety admixture detected in regions of geographical overlap. Divergence between varieties was estimated to have occurred within the Pliocene and ecological niche modelling based on 20 ecological variables suggested that niche differentiation was high. Furthermore, modelling of population‐genetic data indicated that two of the varieties (var. rubescens and var. linzhiensis) expanded their population sizes after the largest Quaternary glaciation in the QTP, while expansion of the third variety (var. likiangensis) began prior to this, probably following the Pliocene QTP uplift. These findings point to the importance of geological and climatic changes during the Pliocene and Pleistocene as causes of intraspecific diversification and range shifts of dominant tree species in the QTP biodiversity hot spot region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号