首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock denatures cellular protein and induces both a state of acquired thermotolerance, defined as resistance to a subsequent heat shock, and the synthesis of a category of proteins referred to as heat-shock proteins (HSPs). Thermotolerance may be due to the stabilization of thermolabile proteins that would ordinarily denature during heat shock, either by HSPs or some other factors. We show by differential scanning calorimetry (DSC) that mild heat shock irreversibly denatures a small fraction of Chinese hamster lung V79-WNRE cell protein (i.e., the enthalpy change, which is proportional to denaturation, on scanning to 45 degrees C at 1 degree C/min is approximately 2.3% of the total calorimetric enthalpy). Thermostability, defined by the extent of denaturation during heat shock and determined from DSC scans of whole cells, increases as the V79 cells become thermotolerant. Cellular stabilization appears to be due to an increase in the denaturation temperature of the most thermolabile proteins; there is no increase in the denaturation temperatures of the most thermally resistant proteins, i.e., those denaturing above 65 degrees C. Cellular stabilization is also observed in the presence of glycerol, which is known to increase resistance to heat shock and to stabilize proteins in vitro. A model is presented, based on a direct relationship between the extent of hyperthermic killing and the denaturation or inactivation of a critical target that defines the rate-limiting step in killing, which predicts a transition temperature (Tm) of the critical target for control V79-WNRE cells of 46.0 degrees C and a Tm of 47.3 degrees C for thermotolerant cells. This shift of 1.3 degrees C is consistent with the degree of stabilization detected by DSC.  相似文献   

2.
The nuclear matrix is a thermolabile cellular structure   总被引:2,自引:0,他引:2       下载免费PDF全文
Heat shock sensitizes cells to ionizing radiation, cells heated in S phase have increased chromosomal aberrations, and both Hsp27 and Hsp70 translocate to the nucleus following heat shock, suggesting that the nucleus is a site of thermal damage. We show that the nuclear matrix is the most thermolabile nuclear component. The thermal denaturation profile of the nuclear matrix of Chinese hamster lung V79 cells, determined by differential scanning calorimetry (DSC), has at least 2 transitions at Tm = 48 degrees C and 55 degrees C with an onset temperature of approximately 40 degrees C. The heat absorbed during these transitions is 1.5 cal/g protein, which is in the range of enthalpies for protein denaturation. There is a sharp increase in 1-anilinonapthalene-8-sulfonic acid (ANS) fluorescence with Tm = 48 degrees C, indicating increased exposure of hydrophobic residues at this transition. The Tm = 48 degrees C transition has a similar Tm to those predicted for the critical targets for heat-induced clonogenic killing (Tm = 46 degrees C) and thermal radiosensitization (Tm = 47 degrees C), suggesting that denaturation of nuclear matrix proteins with Tm = 48 degrees C contribute to these forms of nuclear damage. Following heating at 43 degrees C for 2 hours, Hsc70 binds to isolated nuclear matrices and isolated nuclei, probably because of the increased exposure of hydrophobic domains. In addition, approximately 25% of exogenous citrate synthase also binds, indicating a general increase in aggregation of proteins onto the nuclear matrix. We propose that this is the mechanism for increased association of nuclear proteins with the nuclear matrix observed in nuclei Isolated from heat-shocked cells and is a form of indirect thermal damage.  相似文献   

3.
Differential scanning calorimetry (DSC) was used to assay thermal transitions that might be responsible for cell death and other responses to hyperthermia or heat shock, such as induction of heat shock proteins (HSP), in whole Chinese hamster lung V79 cells. Seven distinct peaks, six of which are irreversible, with transition temperatures from 49.5 degrees C to 98.9 degrees C are detectable. These primarily represent protein denaturation with minor contributions from DNA and RNA melting. The onset temperature of denaturation, 38.7 degrees C, is shifted to higher temperatures by prior heat shock at 43 degrees and 45 degrees C, indicative of irreversible denaturation occurring at these temperatures. Thus, using DSC it is possible to demonstrate significant denaturation in a mammalian cell line at temperatures and times of exposure sufficient to induce hyperthermic damage and HSP synthesis. A model was developed based on the assumption that the rate limiting step of hyperthermic cell killing is the denaturation of a critical target. A transition temperature of 46.3 degrees C is predicted for the critical target in V79 cells. No distinct transition is detectable by DSC at this temperature, implying that the critical target comprises a small fraction of total denaturable material. The short chain alcohols methanol, ethanol, isopropanol, and t-butanol are known hyperthermic sensitizers and ethanol is an inducer of HSP synthesis. These compounds non-specifically lower the denaturation temperature of cellular protein. Glycerol, a hyperthermic protector, non-specifically raises the denaturation temperature for proteins denaturing below 60 degrees C. Thus, there is a correlation between the effect of these compounds on protein denaturation in vivo and their effect on cellular sensitivity to hyperthermia.  相似文献   

4.
5.
Hemolysis of human erythrocytes as a function of time of exposure to 47.4-54.5 degrees C was measured and correlated to thermal transitions in the membranes of intact erythrocytes as determined by differential scanning calorimetry (DSC). Curves of hemoglobin leakage (a measure of hemolysis) as a function of time have a shoulder region exhibiting no leakage, indicative of the ability to accumulate sublethal damage (i.e., damage not sufficient to cause lysis), followed by a region of leakage approximating pseudo-first-order kinetics. Inverse leakage rates (Do) of 330-21 min were obtained from 47.4-54.5 degrees C, respectively. A relatively high activation energy of 304 +/- 22 kJ/mol was obtained for leakage, eliminating the involvement of metabolic processes but implicating a transition as the rate-limiting step. Membrane protein involvement was suggested by the very low rate (10(-2) of the rate from erythrocytes) and low activation energy (50 +/- 49 kJ/mol) of hemoglobin leakage from liposomes containing no membrane protein. A model was developed that predicts a transition temperature (Tm) for the critical target (rate-limiting step) of 60 degrees C when measured at a scan rate of 1 K/min. DSC scans were obtained from intact erythrocytes and a procedure developed to fit and remove the transition for hemoglobin denaturation which dominated the scan. Three transitions remained (transitions A, B, and C) with Tm values of 50.0, 56.8, and 63.8 degrees C, respectively. These correspond to, but occur at slightly different temperatures than, the A, B, and C transitions of isolated erythrocyte membranes in the same salt solution (Tm = 49.5, 53-58, and 65.5 degrees C, respectively). In addition, the relative enthalpies of the three transitions differ between isolated membranes and erythrocytes, suggestive of membrane alterations occurring during isolation. Thus, all analyses were conducted on DSC scans of intact erythrocytes. The B transition is very broad and probably consists of several transitions. An inflection, which is seen as a distinct peak (transition B3) in fourth-derivative curves, occurs at 60.8 degrees C and correlates well with the predicted Tm of the critical target. Ethanol (2.2%) lowers the Tm of B3 by 4.0-4.5 K, close to the shift of 3.3 K predicted from its effect on hemolysis. Glycerol (10%) has very little effect on both hemolysis and the Tm of B3, but it stabilizes spectrin (delta Tm = 1.5 K) against thermal denaturation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Many methods exist for measuring and studying protein denaturation in vitro. However, measuring protein denaturation in cells under conditions relevant to heat shock presents problems due to cellular complexity and high levels of light scattering that interfere with optical techniques. A general method for measuring protein denaturation in cells using high sensitivity differential scanning calorimetry (DSC) is given. Profiles of specific heat (c(p) vs. temperature) are obtained providing information about transitions in cellular components including the denaturation of proteins. The specific approaches employed with erythrocytes, bacteria, and mammalian cells are described, and an identification of several features of the DSC profiles is given. Protein denaturation on the level of roughly 7-20% occurs for commonly used heat shocks in mammalian cells.  相似文献   

7.
Exposure of cultured rat hepatoma (HTC) cells to a 43 degrees C heat shock transiently accelerates the degradation of the long-lived fraction of cellular proteins. The rapid phase of proteolysis which lasts approximately 2 h after temperature step-up is followed by a slower phase of proteolysis. During the first 2 h after temperature step-up there is a wave of ubiquitin conjugation to cellular proteins which is accompanied by a fall in ubiquitin and ubiquitinated histone 2A (uH2A) levels. Upon continued incubation at 43 degrees C the levels of ubiquitin conjugates fall with a corresponding increase of ubiquitin and uH2A to initial levels. The burst of protein degradation and ubiquitin conjugation after temperature step-up is not affected by the inhibition of heat shock protein synthesis. Cells of the FM3A ts85 mutant, which have a thermolabile ubiquitin activating enzyme (E1), do not accelerate protein degradation in response to a 43 degrees C heat shock, whereas wild-type FM3A mouse cells do. This observation indicates that the ubiquitin system is involved in the degradation of heat-denatured proteins. Sequential temperature jump experiments show that the extent of proteolysis at temperatures up to 43 degrees C is related to the final temperature and not to the number of steps taken to attain it. Temperature step-up to 45 degrees C causes the inhibition of intracellular proteolysis. We propose the following explanation of the above observations. Heat shock causes the conformational change or denaturation of a subset of proteins stable at normal temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 degrees C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 degrees C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR-1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca(2+)ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.  相似文献   

9.
Differential scanning calorimetry (DSC) and fatty acid analysis were used to determine how cold shocking reduces the thermal stability of Listeria monocytogenes. Additionally, antibiotics that can elicit production of cold or heat shock proteins were used to determine the effect of translation blockage on ribosome thermal stability. Fatty acid profiles showed no significant variations as a result of cold shock, indicating that changes in membrane fatty acids were not responsible for the cold shock-induced reduction in thermal tolerance. Following a 3-h cold shock from 37 to 0 degrees C, the maximum denaturation temperature of the 50S ribosomal subunit and 70S ribosomal particle peak was reduced from 73.4 +/- 0.1 degrees C (mean +/- standard deviation) to 72.1 +/- 0.5 degrees C (P < or = 0.05), indicating that cold shock induced instability in the associated ribosome structure. The maximum denaturation temperature of the 30S ribosomal subunit peak did not show a significant shift in temperature (from 67.5 +/- 0.4 degrees C to 66.8 +/- 0.5 degrees C) as a result of cold shock, suggesting that either 50S subunit or 70S particle sensitivity was responsible for the intact ribosome fragility. Antibiotics that elicited changes in maximum denaturation temperature in ribosomal components also elicited reductions in thermotolerance. Together, these data suggest that ribosomal changes resulting from cold shock may be responsible for the decrease in D value observed when L. monocytogenes is cold shocked.  相似文献   

10.
Examination of the proteins synthesized by isolated mitochondria, chloroplasts, or proplastids from maize tissues showed that a heat treatment at 40 degrees C does not induce or enhance the synthesis of any protein when compared to preparations treated at the control temperature of 28 degrees C. These observations are consistent with the results obtained by labeling proteins in vivo under sterile conditions. In vivo labeling in the presence of cycloheximide during heat shock showed no heat shock protein synthesis. Labeling in the presence of chloramphenicol during heat shock showed a similar heat shock protein pattern as in the absence of the inhibitor. It is concluded that maize organelles do not synthesize heat shock proteins and that, if present, they may be due to bacterial contamination.  相似文献   

11.
Thermograms of the exosporium-lacking dormant spores of Bacillus megaterium ATCC 33729, obtained by differential scanning calorimetry, showed three major irreversible endothermic transitions with peaks at 56, 100, and 114 degrees C and a major irreversible exothermic transition with a peak at 119 degrees C. The 114 degrees C transition was identified with coat proteins, and the 56 degrees C transition was identified with heat inactivation. Thermograms of the germinated spores and vegetative cells were much alike, including an endothermic transition attributable to DNA. The ascending part of the main endothermic 100 degrees C transition in the dormant-spore thermograms corresponded to a first-order reaction and was correlated with spore death; i.e., greater than 99.9% of the spores were killed when the transition peak was reached. The maximum death rate of the dormant spores during calorimetry, calculated from separately measured D and z values, occurred at temperatures above the 73 degrees C onset of thermal denaturation and was equivalent to the maximum inactivation rate calculated for the critical target. Most of the spore killing occurred before the release of most of the dipicolinic acid and other intraprotoplast materials. The exothermic 119 degrees C transition was a consequence of the endothermic 100 degrees C transition and probably represented the aggregation of intraprotoplast spore components. Taken together with prior evidence, the results suggest that a crucial protein is the rate-limiting primary target in the heat killing of dormant bacterial spores.  相似文献   

12.
Molecular basis of the heat denaturation of photosystem II   总被引:4,自引:0,他引:4  
The thermal denaturation of the photosystem II (PSII) membrane protein complex is investigated by assigning the endothermic transitions observed by differential scanning calorimetry (DSC) to the denaturation of particular proteins of the PSII complex. In a prior DSC study of PSII membranes [Thompson, L. K., Sturtevant, J. M., & Brudvig, G. W. (1986) Biochemistry 25, 6161], five DSC peaks were observed in the 30-70 degrees C temperature range (A1, A2, B, C, and D). The A2 peak was assigned to denaturation of a component essential for water oxidation and the B peak to denaturation of a component critical to the remainder of the electron-transport chain. We have now extended these studies with thermal gel analysis and electron paramagnetic resonance (EPR) measurements. Thermal gel analysis, a technique which relies on a change in the solubility properties of a membrane protein upon denaturation, has been used to determine the temperatures of denaturation of all of the major membrane proteins of the PSII complex. EPR experiments have been used to monitor chlorophyll photooxidation and the stability of TyrD+. Peaks B, C, and D in the DSC denaturation profile are each assigned to the denaturation of several proteins, which provides information on the organization of the PSII complex into structural and functional units. Peak B corresponds to the denaturation of peripheral core proteins and closely associated antenna proteins, peak C to the PSII core, and peak D to the loosely associated antenna proteins. No membrane protein is observed to denature during the A2 peak. The A2 peak is altered by the presence of catalase, superoxide dismutase, low chloride, and high pH. These results suggest that the abnormally sharp A2 peak occurs when the highly oxidizing, sequestered Mn complex (the active site in water oxidation) becomes accessible to the aqueous phase, at elevated temperatures. We propose a mechanism for the reaction of the Mn complex with hydroxide ions, which involves peroxide or superoxide and results in the reduction and release of Mn. The proposed model provides insight into the well-known instability of the Mn complex and the role of chloride in stabilizing the complex. This may enable the future development of purification procedures and may explain the sensitivity of the water-oxidizing apparatus of PSII to heat denaturation.  相似文献   

13.
A20 lymphoma cells were subjected to heat shock for 2 h at 42 and 43 +/- 0.1 degrees C and then evaluated at 37 degrees C for sensitivity to lysis by intact allo-specific cytotoxic T lymphocytes (CTLs), perforin-containing granules isolated from CTLs, and Fas-mediated apoptosis. Heat shock at 42 degrees C caused little change in sensitivity of the lymphoma cell line to lysis by intact CTLs or their isolated cytotoxic granules, but caused increased sensitivity to Fas-mediated apoptosis. However, A20 cells shocked at 43 degrees C declined significantly in sensitivity to lysis by intact CTLs, while remaining very sensitive to perforin granules and to Fas-mediated apoptosis. Expression of the inducible heat shock protein was observed in A20 cells incubated at 43 degrees C, but not in those incubated at 42 degrees C, suggesting a role for heat shock proteins. Furthermore, A20 cells shocked at 43 degrees C did not provoke degranulation and secretion of granzymes by antigen-specific CTLs, although formation of CTL-target conjugates and levels of MHC class I molecules remained unchanged. These observations demonstrate that hyperthermia or febrile conditions may reduce susceptibility of target cells to CTL attack due to failure of antigen presentation and the inability of CTLs to recognize heat stressed targets, thus enabling targets to escape CTL attack.  相似文献   

14.
Revival studies of Aeropyrum pernix show that the viability of cells and cell recovery after heat treatment depends on the temperature of treatment. Differential scanning calorimetry (DSC) is used to analyze the relative thermal stabilities of cellular components of A. pernix and to identify the cellular components responsible for the observed lag phase and reduced maximum growth following a heat treatment. DSC thermograms show 5 visible endothermic transitions with 2 major transitions. DSC analysis of isolated crude ribosomes aids the assignment of the 2 major peaks observed in whole-cell thermograms to denaturation of ribosomal structures. A comparison of partial and immediate full rescan thermograms of A. pernix whole cells indicates that both major peaks represent irreversible thermal transitions. A DNA peak is also identified in the whole-cell thermogram by comparison with the optical data of isolated pure DNA. DNA melting is shown to be irreversible in dilute solution, whereas it is partially reversible in whole cells, owing at least in part, to restricted volume effects. In contrast to mesophilic organisms, hyperthermophilic A. pernix ribosomes are more thermally stable than DNA, but in both organisms, irreversible changes leading to cell death occur owing to ribosomal denaturation.  相似文献   

15.
K Lohner  A F Esser 《Biochemistry》1991,30(26):6620-6625
The thermotropic behavior of purified human complement protein C9 was investigated by high-sensitivity differential scanning calorimetry. When dissolved in physiological buffers (pH 7.2, 150 mM NaCl), C9 underwent three endothermic transitions with transition temperatures (Tm) centered at about 32, 48, and 53 degrees C, respectively, and one exothermic transition above 64 degrees C that correlated with protein aggregation. The associated calorimetric enthalpies of the three endothermic transitions were about 45, 60, and 161 kcal/mol with cooperative ratios (delta Hcal/delta HvH) close to unity. The total calorimetric enthalphy for the unfolding process was in the range of 260-280 kcal/mol under all conditions. The exothermic aggregation temperature was strongly pH dependent, changing from 60 degrees C at pH 6.6 to 81.4 degrees C at pH 8.0, whereas none of the three endothermic transitions was significantly affected by pH changes. They were, however, sensitive to addition of calcium ions; most affected was Tm1 which shifted from 32 to 35.8 degrees C in the presence of 3 mM calcium, i.e., the normal blood concentration. Kosmotropic ions stabilized the protein by shifting the endothermic transitions to slightly higher temperatures whereas inclusion of chaotropic ions (such as choline), removal of bound calcium by addition of EDTA, or proteolysis with thrombin lowered the transition temperatures. Previous studies had indicated the formation of at least three different forms of C9 during membrane insertion or during heat polymerization, and it is suggested that the three endothermic transitions reflect the formation of such C9 conformers. Choline, which is present at high concentrations on the surface of biological membranes, and calcium ions have the ability to shift the transition temperatures of the first two transitions to be either close to or below body temperature. Thus, it is very likely that C9 is present in vivo in a partially unfolded state when bound to a membrane surface, and we propose that this facilitates membrane insertion and refolding of the protein into an amphiphilic conformation.  相似文献   

16.
The unfolding of human apolipoprotein B-100 in its native lipid environment, low density lipoprotein (LDL), and in a soluble, lipid-free complex with sodium deoxycholate (NaDC) has been examined using differential scanning calorimetry (DSC) and near UV circular dichroic (CD) spectroscopy. High resolution DSC shows that LDL undergoes three thermal transitions. The first is reversible and corresponds to the order-disorder transition of the core-located cholesteryl esters (CE) (Tm = 31.1 degrees C, delta H = 0.75 cal/g CE). The second, previously unreported, is reversible with heating up to 65 degrees C (Tm = 57.1 degrees C, delta H = 0.20 cal/g apoB) and coincides with a reversible change in the tertiary structure of apoB as shown by near UV-CD. No alteration in the secondary structure of apoB is observed over this temperature range. The third transition is irreversible (Tm = 73.5 degrees C, delta H = 0.99 cal/g apoB) and coincides with disruption of the LDL particle and denaturation of apoB. The ratio of delta H/delta HvH for the reversible protein-related transition suggests that this is a two-state event that correlates with a change in the overall tertiary structure of the entire apoB molecule. The second protein-related transition is complex and coincides with irreversible denaturation. ApoB solubilized in NaDC undergoes three thermal transitions. The first two are reversible (Tm = 49.7 degrees C, delta H = 1.13 cal/g apoB; Tm = 56.4 degrees C, delta H = 2.55 cal/g apoB, respectively) and coincide with alterations in both secondary and tertiary structure of apoB. The changes in secondary structure reflect an increase in random coil conformation with a concomitant decrease in beta-structure, while the change in tertiary structure suggests that the conformation of the disulfide bonds is altered. The third transition is irreversible (Tm = 66.6 degrees C, delta H = 0.54 cal/g apoB) and coincides with complete denaturation of apoB and disruption of the NaDC micelle. The ratio of delta H/delta HvH for the two reversible transitions indicates that each of these transitions is complex which may suggest that several regions or domains of apoB are involved in each thermal event.  相似文献   

17.
Differential scanning calorimetry (DSC) has been used to investigate the macroscopic structure of photosystem II (PS II). Five endothermic transitions, A1, A2, B, C, and D, are observed in the 30-70 degrees C temperature range and are partially assigned on the basis of heat inactivation experiments, relative peak areas, and the effect of MgCl2 on the DSC trace. We suggest that peaks C and D correspond to the denaturation of the light-harvesting chlorophyll a/b proteins and peak B to the denaturation of components critical to the electron-transport chain. In a DSC study of thylakoid membranes [Cramer, W. A., Whitmarsh, J., & Low, P. S. (1981) Biochemistry 20, 157-162], the lowest temperature shoulder was assigned to the denaturation of the oxygen-evolving complex (OEC). By correlating the temperature of heat inactivation with the temperatures of the DSC peaks of PS II in a range of detergent concentrations (causing shifts in the peak positions), we assign peak A2 to the functional denaturation of the OEC. We have used peak A2 as a new probe of the OEC and have found this peak to be sensitive to the oxidation state of cytochrome b559. Oxidation of cytochrome b559 with 1 mM ferricyanide, which has no effect on oxygen evolution activity, causes peak A2 to disappear, probably by making it too broad to observe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Thermal transitions were measured by differential scanning calorimetry for rabbit cardiac sarcolemma in 3-(N-morpholino)propanesulfonic acid buffer at pH 7.5, in glycerol-buffer and dimethyl sulfoxide - buffer mixtures, after heat denaturation, and after enzymatic degradation of the proteins. Specific solvent effects on the protein transitions were observed. Glycerol stabilized some of the four protein transitions, while dimethyl sulfoxide destabilized all protein transitions. The thermal transitions in the lower temperature range were studied for both the membranes and the lipid extracted from the membranes. A very small endotherm was observed for both the lipid extracted from the sarcolemma and the intact membrane (0.1-0.2 cal/g; 1 cal = 4.1868 J). A larger endotherm was observed in both the glycerol-buffer and dimethyl sulfoxide - buffer mixtures. Major perturbation of the protein by enzymatic degradation (papain or trypsin digestion), by heat denaturation, or by reaction with excess N-ethylmaleimide all produced larger endotherms near 20 degrees C. The very small magnitude of the endotherm near 20 degrees C suggests that it is not a typical gel - liquid crystalline transition of the bilayer. However, the occurrence of an endotherm in the extracted lipid suggests that some reorientation of lipid is involved.  相似文献   

19.
A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models.  相似文献   

20.
The thermal properties and heat-induced denaturation and aggregation of soy protein isolates (SPI) were studied using modulated differential scanning calorimetry (MDSC). Reversible and non-reversible heat flow signals were separated from the total heat flow signals in the thermograms. In the non-reversible profiles, two major endothermic peaks (at around 100 and 220 degrees C, respectively) associated with the loss of residual water were identified. In the reversible profiles, an exothermic peak associated with thermal aggregation was observed. Soy proteins denatured to various extents by heat treatments showed different non-reversible and reversible heat flow patterns, especially the exothermic peak. The endothermic or exothermic transition characteristics in both non-reversible and reversible signals were affected by the thermal history of the samples. The enthalpy change of the exothermic (aggregation) peak increased almost linearly with increase in relative humidity (RH) in the range between 8 and 85%. In contrast, the onset temperature of the exotherm decreased progressively with increase in RH. These results suggest that the MDSC technique could be used to study thermal properties and heat-induced denaturation/aggregation of soy proteins at low moisture contents. Associated functional properties such as water holding and hydration property can also be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号