首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从受石油污染的土壤中筛选出一株破乳菌Alcaligenes sp. S-XJ-1,该菌在初始pH6.0-11.0均可生长,其最适初始pH为10.0。在初始pH10.0条件下培养,破乳菌产量最高可达4.8g/L,菌悬液投加量为1000mg/L时,24h破乳率在85%以上。同时,该培养条件下得到的生物破乳菌细胞表面疏水性最大,对碳氢化合物的吸附能力达72.7%,接触角达115°。采用稳定性分析仪分别对pH7.0和pH10.0条件下培养得到的菌体的破乳效果进行分析,结果发现与初始pH7.0相比,初始pH10.0培养得到的破乳菌可以加速分散相粒径的增大,最终使乳状液破乳速率大幅提高。  相似文献   

2.

Objective

Water in oil emulsions increase oil processing costs and cause damage to refinery equipment which necessitates demulsification. Since chemical demulsifiers cause environmental pollution, biodemulsifiers have been paid more attention. This study aims to identify biodemulsifier-producing bacteria from petroleum contaminated environments.

Results

As a result, several biodemulsifier producing strains were found that Stenotrophomonas sp. strain HS7 (accession number: MF445088) which produced a cell associated biodemulsifier showed the highest demulsifying ratio, 98.57% for water in kerosene and 66.28% for water in crude oil emulsion after 48 h. 35 °C, pH 7, 48 h incubation and ammonium nitrate as nitrogen source were optimum conditions for biodemulsifier production. Furthermore, it was found that hydrophobic carbon sources like as liquid paraffin is not preferred as the sole carbon source while a combination of various carbon sources including liquid paraffin will increase demulsification efficiency of the biodemulsifier.

Conclusions

The appropriate potential of this biodemulsifier strengthens the possibility of its application in industries especially petroleum industry.
  相似文献   

3.
The demulsifying bacterium XH1 was identified as a Bacillus mojavensis by the 16S rDNA gene. The extracellular biodemulsifier produced by this species was purified by ethanol extraction and column chromatography through a sephadex and silicon gel column. Preliminary investigation using UV–vis and TLC indicated that the biodemulsifier had two components a protein and a lipopeptide. All major components of the medium, including the sources of soluble and insoluble carbon, nitrogen, phosphate, and metal ions were investigated to improve the biosynthesis and efficiency of the biodemulsifier. The optimal carbon sources were glucose and liquid paraffin. Glucose participated in the biosynthesis of the demulsifier, while liquid paraffin promoted the lipophilicity and secretion of biosurfactants. The absence of yeast extract, ammonium chloride or phosphate (K2HPO4/KH2PO4) had a negative effect on the production of the biodemulsifier and significantly inhibited its activity. To further enhance the biodemulsifier efficiency, the optimal medium composition was determined using the response surface methodology (RSM) based on the central composite rotation design (CCRD). Using the optimized biodemulsifier production medium: 8.5 g/l glucose; 3% (v/v) liquid paraffin; 1.5 g/l yeast extract; 3.36 g/l NH4Cl and15 g/l phosphate, the demulsifying ratio increased 35.5% and biodemulsifier yield increased to 2.07 g/l.  相似文献   

4.

Background

Cell surface hydrophobicity (CSH) is one of the key physicochemical features of biodemulsifier-producing bacteria that influence their demulsification capability maintenance in petroleum contaminated environments.

Methods

In present study, biodemulsifier-producing bacteria were isolated from petroleum contaminated environments using different isolation media and the correlation between their CSH and demulsifying ability was investigated. The demulsifying ability of isolates was measured through demulsification tests on water in kerosene emulsions. The microbial adhesion to the hydrocarbon (MATH) assay was used to denote their CSH.

Results

The evaluation of CSH showed that majority of biodemulsifier producing bacteria have high CSH which indicating a positive correlation between CSH and demulsifying capability.

Conclusions

According to these results it can be concluded that CSH can be used as an indicator for assessment of biodemulsifier-producing bacteria and screening of new isolates for their biodemulsifier production.
  相似文献   

5.

Cell-surface functional groups (amino, carboxyl, hydroxyl, as well as phosphate) were chemically modified in various ways to enhance the demulsification capability of the demulsifying bacteria Alcaligenes sp. S-XJ-1. Results demonstrated that the demulsifying activity was significantly inhibited by amino enrichment with cetyl trimethyl ammonium bromide, amino methylation, hydroxyl acetylation, and phosphate esterification, but was gradually promoted by carboxyl blocking with increasing the extents of esterification. Compared with the raw biomass, an optimal esterification of carboxyl moieties enhanced the demulsification ratio by 26.5% and shortened the emulsion half-life from 24 to 8.8 h. The demulsification boost was found to be dominated by strengthened hydrophobicity (from 53° to 74°) and weakened electronegativity (from −34.6 to −4.3 mV at pH 7.0) of the cell surface, allowing the rapid dispersion and adsorption of cells onto the oil-water interface. The chemical modification of the functional groups on the biomass surface is a promising tool for the creation of a high-performance bacterial demulsifier.

  相似文献   

6.
Huang XF  Liu J  Lu LJ  Wen Y  Xu JC  Yang DH  Zhou Q 《Bioresource technology》2009,100(3):1358-1365
In this paper, surface tension measurement, oil-spreading test and blood-plate hemolysis test were attempted in the screening of demulsifying bacteria. After the comparison to the screening results obtained in demulsification test, 50 mN/m of surface tension of culture was proposed as a preliminary screening standard for potential demulsifying bacteria. For the identification of efficient demulsifying strains, surface tension level was set at 40 mN/m. The detected strains were further verified in demulsification test. Compared to using demulsification test alone as screening method, the proposed screening protocol would be more efficient. From the screening, a highly efficient demulsifying stain, S-XJ-1, was isolated from petroleum-contaminated soil and identified as Alcaligenes sp. by 16S rRNA gene and physiological test. It achieved 96.5% and 49.8% of emulsion breaking ratio in W/O and O/W kerosene emulsion within 24h, respectively, and also showed 95% of water separation ratio in oilfield petroleum emulsion within 2h. The bio-demulsifier was found to be cell-wall combined. After soxhlet extraction and purification through silicon-gel column, the bio-demulsifier was then identified as lipopeptide biosurfactant by TLC and FT-IR.  相似文献   

7.
Pseudomonas putida F1 can metabolize toluene, ethylbenzene, and benzene for growth. Previously, we identified proteins involved in the utilization of these compounds by P. putida F1 through culture in liquid media. However, it was unclear whether laboratory analysis of bacterial activity and catabolism accurately reflected the soil environment. We identified proteins involved in the degradation of toluene, ethylbenzene, and benzene growth in soil using two-dimensional gel electrophoresis (2-DE) or standard SDS-PAGE combined with liquid chromatography–tandem mass spectrometry (LC–MS/MS). According to 2-DE/LC–MS/MS analysis, 12 of 22 key enzymes involved in the degradation of toluene, ethylbenzene, and benzene were detected. In standard SDS-PAGE/LC–MS/MS analysis of soil with ethylbenzene, approximately 1,260 cellular proteins were identified in P. putida F1. All key enzymes and transporter and sensor proteins involved in ethylbenzene degradation were up-regulated similar to that noted in liquid cultures. In P. putida F1, aromatic hydrocarbon response in soil is the same as that observed in liquid media.  相似文献   

8.
In order to lower the production cost, waste frying oils were used in the biosynthesis of demulsifier by Dietzia sp. S-JS-1, which was isolated from petroleum contaminated soil. After 7 days of cultivation, the biomass concentration of the most suitable waste frying oil (WFO II) culture reached 3.78 g/L, which was 2.4 times the concentration of paraffin culture. The biodemulsifier produced with WFO II culture broke the emulsions more efficiently than that produced with paraffin culture, given the same volume ratio of carbon source in the culture medium and the same cultivation conditions. It achieved 88.3% of oil separation ratio in W/O emulsion and 76.4% of water separation ratio in O/W emulsion within 5 h. With the aid of thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrometry, biodemulsifiers produced from both paraffin and WFO II were identified as a mixture of lipopeptide homologues. The subtle variation in the distribution of these homologues and high biomass concentration of WFO II cultures may account for the afore-mentioned good demulsification performance.  相似文献   

9.
Till now, only scattered data are available in the literature, which describes the protein content of plant oil bodies. Especially, the proteins closely associated with the model plant Arabidopsis thaliana oil bodies have never been previously purified and characterized. Oil bodies have been purified using flotation techniques, combined with incubations under high salt concentration, in the presence of detergents and urea in order to remove non-specifically trapped proteins. The identity and integrity of the oil bodies have been characterized. Oil bodies exhibited hydrodynamic diameters close to 2.6 μm, and a ratio fatty acid-protein content near 20. The proteins composing these organelles were extracted, separated by SDS-PAGE, digested by trypsin, and their peptides were subsequently analyzed by nano-chromatography–mass spectrometry (nano-LC–MS/MS). This led to the identification of a limited number of proteins: four different oleosins, ATS1, a protein homologous to calcium binding protein, a 11-β-hydroxysteroid dehydrogenase-like protein, a probable aquaporin and a glycosylphosphatidylinositol-anchored protein with no known function. The two last proteins were till now never identified in plant oil bodies. Structural proteins (oleosins) represented up to 79% of oil body proteins and the 18.5 kDa oleosin was the most abundant among them.  相似文献   

10.
Dietzia sp. S-JS-1利用废弃油脂生产生物破乳剂的研究   总被引:2,自引:0,他引:2  
生物破乳剂是近期开发出来的用于油水分离的新型破乳剂。本研究利用从受石油污染的土壤中筛选得到、并采用16S rRNA鉴定为Dietzia sp.的一株破乳剂产生菌, 在以废弃油脂MWFO、SWFO为碳源培养下, 得到的生物破乳剂的粗重为4 g/L、3.5 g/L; 对于W/O、O/W模型乳状液的破乳效果均可超过以液体石蜡产生的破乳剂, 且以SWFO废弃油脂培养得到的生物破乳剂可以同时应用于两种模型乳状液的使用。对于碳源利用方面Dietzia sp.在利用两种废弃油脂脂肪酸的过程中, 都是优先利用C16和C18的脂肪酸, 但对于两种废弃油脂的利用率上存在一定差异。采用TLC和FTIR分析发现, 3种碳源培养得到的生物破乳剂均为脂肽类生物破乳剂, 其破乳剂的化学结构还有待进一步研究。  相似文献   

11.
The proteome of rumen epithelial tissue was analysed by SDS-PAGE coupled with LC–MS/MS. 813 non-redundant proteins were identified of which 7.4 % featured membrane-spanning domains and 15.4 % harboured a signal peptide. According to the gene ontology annotation, the most abundant proteins exhibited binding activities related to their molecular functions, were proteins of cellular components or belonged to various metabolic processes. A predominant group of canonical pathways in the rumen epithelial tissue was identified using the IPA software. The GeLC–MS/MS approach was used to characterise the entire protein expression repertoire in rumen tissue, providing a more detailed understanding of the important biological processes in the rumen.  相似文献   

12.
针对生物破乳剂产生菌筛选难的问题, 采用显色法、溶血细胞测试法、表面张力测定法和排油圈法从6种不同菌源对生物破乳菌产生菌进行了筛选。通过试验筛选得到了17株生物破乳剂产生菌, 其中24h内破乳率高于70%的破乳菌有5株; 油田含油污泥、采油废水生物处理污泥和污水处理厂剩余污泥是筛选破乳菌的较好的菌源; 显色法、溶血圈法存在检测范围的局限性; 表面张力测定法和排油圈法是最为简易和准确的生物表面活性剂产生菌的筛选方法, 采用模型乳状液对生物破乳剂产生菌进行筛选最为直接和准确, 但工作量大、所需时间长, 因此在筛选高效破乳菌时, 建议采用表面张力、排油圈法进行初筛, 而后通过模型乳状液破乳进行验证。  相似文献   

13.
生物破乳剂产生菌的筛选及其方法研究   总被引:1,自引:0,他引:1  
针对生物破乳剂产生菌筛选难的问题,采用显色法、溶血细胞测试法、表面张力测定法和排油圈法从6种不同菌源对生物破乳菌产生茵进行了筛选.通过试验筛选得到了17株生物破乳剂产生茵,其中24h内破乳率高于70%的破乳菌有5株;油田含油污泥、采油废水生物处理污泥和污水处理厂剩余污泥是筛选破乳菌的较好的菌源:显色法、溶血圈法存在检测范围的局限性;表面张力测定法和排油圈法是最为简易和准确的生物表面活性剂产生茵的筛选方法,采用模型乳状液对生物破乳剂产生菌进行筛选最为直接和准确,但工作量大、所需时间长,因此在筛选高效破乳菌时,建议采用表面张力、排油圈法进行初筛,而后通过模型乳状液破乳进行验证.  相似文献   

14.
生物破乳菌在石油开采与加工行业的研究已经引起各界的广泛关注,然而由于生物破乳菌菌体形态、表面性质和表面物质的复杂性,使菌体的破乳活性特征尚未被揭示。本文介绍了生物破乳剂的来源、合成及破乳机制;归纳了影响生物破乳菌破乳活性的菌体形态、表面性质和表面物质三方面因素的研究进展,特别是总结了相关研究的方法;最后在此基础上对今后研究方向提出展望。  相似文献   

15.
AtMAPR5/MSBP1 and its homologs can be ubiquitinated in the absence of E3 ligase in in vitro ubiquitination assays. Ubiquitinated AtMAPR3, AtMAPR5/MSBP1, and AtMAPR2 were identified using LC–MS/MS. Analysis of trypsin-released signature peptides showed that this E3-independent ubiquitination of AtMAPR3, AtMAPR5/MSBP1, and AtMAPR2 was dominated by mono-ubiquitination at multiple sites. Unlike AtUBC8-type E2s, AtUBC36 was not able to transfer ubiquitin to AtMAPR2. The truncated mutants AtMAPR2Δ1–10, AtMAPR2Δ1–30, and AtMAPR2_1–73 could also be ubiquitinated. The presence of a ubiquitin-binding domain (UBD) allows proteins to be ubiquitinated independently of E3 ligases. However, AtMAPRs do not contain any known UBD. In vitro ubiquitination of AtMAPR2 observed in this study will be further studied in biochemical and physiological aspects.  相似文献   

16.
Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum, Kinosternidae) were analyzed by gas chromatography-mass spectrometry (GC-MS) and SDS-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Analysis by GC-MS indicates 2,3-dihydroxypropanal and C3–C24 free or esterified fatty acids. Analysis by SDS-PAGE indicates a major protein component with an approximate molecular mass of 60 kDa and minor components ranging from ca. 23 to 34 kDa. The major component of K. subrubrum glandular secretions exhibits a mobility that matches that of the Kemp's ridley sea turtle (Lepidochelys kempi, Cheloniidae), suggesting that these proteins are evolutionarily conserved.  相似文献   

17.
The green rice leafhopper, Nephotettix cincticeps, is a vascular bundle feeder that discharges watery and gelling saliva during the feeding process. To understand the potential functions of saliva for successful and safe feeding on host plants, we analyzed the complexity of proteinaceous components in the watery saliva of N. cincticeps. Salivary proteins were collected from a sucrose diet that adult leafhoppers had fed on through a membrane of stretched parafilm. Protein concentrates were separated using SDS-PAGE under reducing and non-reducing conditions. Six proteins were identified by a gas-phase protein sequencer and two proteins were identified using LC-MS/MS analysis with reference to expressed sequence tag (EST) databases of this species. Full -length cDNAs encoding these major proteins were obtained by rapid amplification of cDNA ends-PCR (RACE-PCR) and degenerate PCR. Furthermore, gel-free proteome analysis that was performed to cover the broad range of salivary proteins with reference to the latest RNA-sequencing data from the salivary gland of N. cincticeps, yielded 63 additional protein species. Out of 71 novel proteins identified from the watery saliva, about 60 % of those were enzymes or other functional proteins, including GH5 cellulase, transferrin, carbonic anhydrases, aminopeptidase, regucalcin, and apolipoprotein. The remaining proteins appeared to be unique and species- specific. This is the first study to identify and characterize the proteins in watery saliva of Auchenorrhyncha species, especially sheath-producing, vascular bundle-feeders.  相似文献   

18.
Metaproteomics is a strategy to understand the taxonomy, functionality and metabolic pathways of the microbial communities. The relationship among the symbiotic microbiota in the entire lichen thallus, Dermatocarpon miniatum, was evaluated using the metaproteomic approach. Proteomic profiling using one-dimensional SDS-PAGE followed by LC-MS/MS analysis resulted in a total of 138 identified proteins via Mascot search against UniRef100 and Swiss-Prot databases. In addition to the fungal and algal partners, D. miniatum proteome encompasses proteins from prokaryotes, which is a multifarious community mainly dominated by cyanobacteria and proteobacteria. While proteins assigned to fungus were the most abundant (55 %), followed by protists (16 %), bacterial (13 %), plant (11 %), and viral (1 %) origin, whereas 4 % remained undefined. Various proteins were assigned to the different lichen symbionts by using Gene Ontology (GO) terms, e.g. fungal proteins involved in the oxidation-reduction process, protein folding and glycolytic process, while protists and bacterial proteins were involved in photosynthetic electron transport in photosystem II (PS II), ATP synthesis coupled proton transport, and carbon fixation. The presence of bacterial communities extended the traditional concept of fungal-algal lichen symbiotic interaction.  相似文献   

19.
20.
Integral membrane proteins are notoriously difficult to identify and analyze by mass spectrometry because of their low abundance and limited number of trypsin cleavage sites. Our strategy to address this problem is based on a novel technology for MALDI-MS peptide sample preparation that increases the success rate of membrane protein identification by increasing the sensitivity of the MALDI-TOF system. For this, we used sample plates with predeposited matrix spots of CHCA crystals prepared by vacuum sublimation onto an extremely low wettable (ultraphobic) surface. In experiments using standard peptides, an up to 10-fold gain of sensitivity was found for on-chip preparations compared with classical dried-droplet preparations on a steel target. In order to assess the performance of the chips with membrane proteins, three model proteins (bacteriorhodopsin, subunit IV(a) of ATP synthase, and the cp47 subunit from photosystem II) were analyzed. To mimic realistic analysis conditions, purified proteins were separated by SDS-PAGE and digested with trypsin. The digest MALDI samples were prepared either by dried-droplet technique on steel plates using CHCA as matrix, or applied directly onto the matrix spots of the chip surface. Significantly higher signal-to-noise ratios were observed for all of the spectra resulting from on-chip preparations of different peptides.In a second series of experiments, the membrane proteome of Rhodococcus jostii RHA1 was investigated by AIEC/SDS-PAGE in combination with MALDI-TOF MS/MS. As in the first experiments, Coomassie-stained SDS-PAGE bands were digested and the two different preparation methods were compared. For preparations on the Mass·Spec·Turbo Chip, 43 of 60 proteins were identified, whereas only 30 proteins were reliably identified after classical sample preparation. Comparison of the obtained Mascot scores, which reflect the confidence level of the protein identifications, revealed that for 70% of the identified proteins, higher scores were obtained by on-chip sample preparation. Typically, this gain was a consequence of higher sequence coverage due to increased sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号