首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To minimize wetland losses, many jurisdictions have adopted a ‘mitigation sequence’ that requires compliance for permit delivery. This study evaluated the outcome of this sequence in the province of Quebec, Canada, during the 3 years following its adoption in 2006. A case study was then conducted in the St. Lawrence Lowlands (29,096 km2) to compare statistics on delivered permits with losses detected by detailed mapping of disturbances from two periods: 1990 to 2011 and 2006 to 2011. A total of 558 permits were issued, most of which (550) represented 2870 ha of disturbed wetlands; the remaining (8) corresponding to restoration projects. The mitigation sequence was applied for 323 of the permits, mainly with compensations. The type of action undertaken was registered for only 63 % of the compensations with a minimal fraction dedicated to wetland restoration (1 ha) and creation (14 ha), resulting in a net loss of 99 % of the impacted wetland areas. In the case study, 56,681 ha (19 %) of wetlands had been disturbed in the last two decades, of which 22,535 ha were disturbed between 2006 and 2011, mainly by agricultural and forestry activities. No permit was delivered for these two activities according to our compilation. The area disturbed following permit deliverance was about 17–30 times smaller than losses estimated by our detailed mapping, depending on the period considered. Preserving wetlands will require not only mandatory compliance with the mitigation sequence but also efforts to subscribe all types of industries to the process of permit delivery.  相似文献   

2.
In Oregon’s Willamette Valley, remaining wetlands are at high risk to loss and degradation from agricultural activity and urbanization. With an increased need for fine temporal-scale monitoring of sensitive wetlands, we used annual Landsat MSS and TM/ETM+ images from 1972 to 2012 to manually interpret loss, gain, and type conversion of wetland area in the floodplain of the Willamette River. By creating Tasseled Cap Brightness, Greenness, and Wetness indices for MSS data that visually match TM/ETM+ Tasseled Cap images, we were able to construct a complete and consistent, annual time series and utilize the entire Landsat archive. With an extended time series we were also able to compare annual trends of net change in wetland area before and after the no-net-loss policy established under Section 404 of the Clean Water Act in 1990 using a Theil-Sen Slope estimate analysis. Vegetated wetlands experienced a 314 ha net loss of wetland area and non-vegetated wetlands experienced a 393 ha net gain, indicating higher functioning wetlands were replaced in area by non-vegetated wetland habitats such as agricultural and quarry ponds. The majority of both gain and loss in the study area was attributed to gains and losses of agricultural land. After 1990 policy implementations, the rate of wetland area lost slowed for some wetland categories and reversed into trends of gain in wetland area for others, perhaps representative of the success of increased regulations. Overall accuracy of land use classification through manual interpretation was at 80 %. This accuracy increased to 91.1 % when land use classes were aggregated to either wetland or upland categories, indicating that our methodology was more accurate at distinguishing between general upland and wetland than finer categorical classes.  相似文献   

3.
The existence of laws and policies in Australia that affect wetland protection and rehabilitation has been ascertained. There is a diverse range of environmental legislation, primarily at the state level, that potentially affects wetlands. There are environmental planning instruments made under legislation in New South Wales and Western Australia, which are specifically directed to the protection of wetlands. These are legislative-backed mechanisms providing legal protection to wetlands. Whilst there is no national policy on wetlands, a draft Commonwealth policy has been circulated and is expected to be released in final form in February 1997. New South Wales is the only state with a current wetlands policy, whilst some other states have draft policies. These policies do refer to wetland rehabilitation. The present federal government indicated it wished to finalize a national wetlands policy in the lead up to its election in March 1996. This is not likely to happen soon and any national policy will probably be an implementation framework for the policies of individual governments. It is suggested that a commonwealth policy, whilst useful in providing consistency in commonwealth government decision making affecting wetlands, does not go far enough. Given that only one state in Australia has a wetland policy, it may take the formulation of a national policy to get the remaining states and territories in Australia to finalize their own policies.  相似文献   

4.
This paper explores stakeholders’ perceptions of the efficacy of the current policies and legislation meant to conserve wetlands in the communal areas of Zimbabwe. A questionnaire was administered to one hundred and twenty three households adjacent to six wetlands studied including key informants who were interviewed. The existing laws were analysed to determine their appropriateness in light of peoples’ livelihood aspirations and principles of wetland protection. Zimbabwe has no national wetland policy per se but only wetland legislation, however inimitable policies shaped by indigenous tradition and practice were present at each wetland site. The majority of the people were not aware of the existence and rationale of laws governing the conservation of wetlands due to limited awareness education and enforcement by responsible institutions. Therefore, there was a disjuncture between legal provisions and the practical implementation resulting in less impact. Poor implementation of legislation was due to inadequate resources for regulatory agencies, political interference, social conflicts and high incidences of poverty among other factors. The results of the study highlighted that even if awareness was improved, enforcement was likely to remain a challenge unless adequate resources for regulatory institutions and alternative livelihood strategies for communities were availed. The paper thus recommends that development planners should therefore initiate other rural survival options such as restoration of dryland agricultural productivity by introducing water harvesting and conservation farming techniques. This would help to reduce community dependency on already vulnerable wetland ecosystems. Overall, a national wetland policy should be developed through a participatory process, if the legislation is to be used as an effective tool in wetland management.  相似文献   

5.
1. Invertebrates were collected semi‐quantitatively from four relatively undisturbed wetlands in the west coast of New Zealand’s South Island: two acidic fens and two swamps. Samples were collected from up to four discrete habitats within each wetland: large open‐water channels, small leads (small, ill‐defined channels with emergent vegetation in them) and large (>10 m diameter) or small (<10 m diameter) ponds. Samples were also collected from different plant species within each wetland, each with different morphology, and from areas without vegetation. This was done to determine whether invertebrate communities varied more between‐wetlands than within‐wetlands, as the results had implications for future wetland monitoring programmes. 2. Principal components analysis of water chemistry data revealed striking differences in pH, conductivity and nutrients between the four wetlands. Not surprisingly, pH was lowest in one of the acidic fens, and highest in one of the swamps, where conductivity was also high. Midges (Tanytarsus, Tanypodinae, Orthocladiinae and Ceratopogonidae), nematodes, harpactacoid copepods and the damselfly Xanthocnemis dominated the invertebrate fauna. Orthoclad midges and mites were the most widespread taxa, found in 91 of 94 samples. Diptera were the most diverse invertebrate group, followed by Trichoptera and Crustacea. 3. Ordination analysis of the invertebrate data showed that the four wetlands supported different invertebrate communities. However, species composition did not change completely along the ordination axes, suggesting that a relatively species‐poor invertebrate fauna was found in the wetlands. Taxa such as molluscs were restricted to wetlands with high pH. Multi‐response permutation procedures (MRPP) was used to analyse resultant ordination scores to see how they differed according to five terms: ‘Wetland’, ‘Habitat’, ‘Growth Form’, ‘Morphology’ and ‘Plant’. Most of the sample separation along ordination axes reflected differences between wetland, although the ‘Habitat’ and ‘Plant’ terms also explained some of the variation. The ‘Growth Form’ and ‘Morphology’ terms had only minor effects on community composition. 4. A multivariate regression tree modelled invertebrate assemblages according to the five predictor terms. The resultant model explained 54.8% of the species variance. The ‘Wetland’ term contributed most to the explanatory power, followed by ‘Habitat’. ‘Growth type’ and ‘Morphology’ explained only a small amount of variance to the regression tree, while the different plant species explained none of the variation. 5. Variation in these New Zealand wetland invertebrate communities appears to be controlled most by large‐scale factors operating at the level of individual wetlands, although different habitats within individual wetlands contributed slightly to this variation. Based on these results, sampling programmes to describe wetland invertebrate communities do not need to sample specific habitats or plant types within a wetland. Instead, samples can be collected from a wide range of habitats within individual wetlands, and pooled. Within each habitat, it is unnecessary to collect individual samples from different macrophytes or un‐vegetated areas. Our results suggest that collecting replicate pooled samples from different habitats within each wetland will be sufficient to characterize the invertebrate assemblage of each wetland.  相似文献   

6.
Compensating for wetland losses in the United States   总被引:2,自引:0,他引:2  
Joy B. Zedler 《Ibis》2004,146(S1):92-100
Impacts of climate change on US wetlands will add to those of historical impacts due to other causes. In the US, wetland losses and degradation result from drainage for agriculture, filling for urbanization and road construction. States that rely heavily on agriculture (California, Iowa, Illinois, Missouri, Ohio, Indiana) have lost over 80% of their historical area of wetlands, and large cities, such as Los Angeles and New York City, have retained only tiny remnants of wetlands, all of which are highly disturbed. The cumulative effects of historical and future degradation will be difficult to abate. A recent review of mitigation efforts in the US shows a net loss of wetland area and function, even though 'no net loss' is the national policy and compensatory measures are mandatory. US policy does not include mitigation of losses due to climate change. Extrapolating from the regulatory experience, one can expect additional losses in wetland areas and in highly valued functions. Coastal wetlands will be hardest hit due to sea-level rise. As wetlands are increasingly inundated, both quantity and quality will decline. Recognition of historical, current and future losses of wetland invokes the precautionary principal: avoid all deliberate loss of coastal wetland area in order to reduce overall net loss. Failing that, our ability to restore and sustain wetlands must be improved substantially.  相似文献   

7.
U.S. Environmental Protection Agency wetland regulators appear to use monetary estimates of the societal value of wetlands relatively infrequently in Section 404 permit review, enforcement, and compensatory mitigation-related activities. While 52 % of surveyed EPA regulators had used such estimates at least once, only 3 % reported using them frequently. Forty-eight percent said they never used them. Survey respondents indicated that their use of such estimates is inhibited by a lack of relevant information, uncertainty about the scientific validity of estimates, and concerns about the scientific and legal defensibility of estimate use. Respondents said they would be more apt to use estimates in regulatory activities if they perceived agency approval for such use and had access to training and best practices. The barriers and inducements EPA regulators cited largely accord with the literature on the science-policy divide and with the argument that regulatory use of valuation estimates may be inappropriate because research in this arena is not sufficiently advanced.  相似文献   

8.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources.  相似文献   

9.
《Ecological Engineering》2005,24(4):331-340
The national goal of no net loss of wetland functions is not being met due to a variety of suboptimal policy and operational decisions. Based on data used to develop a conceptual model of wetland degradation and restoration, we address what can be done operationally to improve the prospects for replacing both the area and functions of mitigated wetlands. We use measures of hydrologic, soil, and biodiversity characteristics from reference standard sites, degraded wetlands, and created wetlands to support our premise. These data suggest that wetland diversity and variability often become more homogeneous when subjected to a set of stressors. The degradation process reduces the original heterogeneity of natural wetlands. In addition, soil characteristics and composition of biological communities of creation projects may mirror those of degraded wetlands. We recommend that scientists and managers use identical sampling protocols to collect data from reference wetlands that can be used to assess the condition of degraded wetlands and to improve the design and performance of mitigation projects.  相似文献   

10.
Despite national conservation policies, international agreements and public support related to wetlands, a wide range of agricultural development and public works projects have resulted in the over-exploitation and degradation of wetlands during the past decades in China. The phenomenon of “the tragedy of the commons” in Chinese wetland conservation is recognized as an incentive problem provoked by a multi-stakeholder situation. This paper examines the governance of China’s wetlands and its hierarchical and functional–behavioral characteristics within the context of resource management. The results show that the administrative system in China wetland management depends on resource element-oriented legislation, in that various agencies managing different resources place various demands on wetland resources. This paper analyzes the responsibilities and incentives of various government administrators and other stakeholders as well as their behavioral logic and why such a multi-stakeholder mode fails to provide adequate wetland conservation. Using Heilongjiang Province as an example, it explains the conflicts between stakeholders within both the legislative system and those who administer wetland management. In addition, it suggests improvements, especially in the form of an integrated management system with an appropriate and unified system of administration.  相似文献   

11.
A management plan using a watershed-scale approach was devised to limit loss of wetland functions in the one million ha Tensas Basin, Louisiana, U.S.A. Proposals to develop wetland areas are evaluated for their potential to affect the structure and function of the landscape as a whole. The plan required two prior steps. First, we assessed the structural and functional status of the landscape through time. Second, using the assessment, we formulated a set of environmental goals. The assessment indicated that the landscape is severely degraded; of the original forest, 85% has been lost, and the deforestation has negatively affected water quality and biota. Specific goals were devised to conserve remaining wetland resources and to restore functional integrity to the basin as a whole. On the basis of these two prior steps and principles of landscape ecology and conservation biology, we devised a plan that would establish two large tracts of bottomland forest (BLF) totaling 102 000 and 63 000 ha. These tracts would be established by reforesting about 1000 ha of corridors, primarily along streams, linking existing forest patches. In addition, set-back levees and man-made diversions would be incorporated to restore natural flooding to certain areas of remaining BLF. Existing wetlands would be prioritized on the basis of size and density of patches and placed in one of three management categories. Implementation of such a plan is possible under the present regulatory authority of U.S. federal government programs administered by regulatory agencies responsible for wetland protection.From a paper presented at the Third International Wetlands Conference, 19–23 September 1988, University of Rennes, France.  相似文献   

12.
Coastal wetlands provide essential ecosystem goods and services but are extremely vulnerable to sea-level rise, extreme climate, and human activities, especially the coastal wetlands in large river deltas, which are regarded as “natural recorders” of changes in estuarine environments. In addition to the area (loss or gain) and quality (degradation or improvement) of coastal wetlands, the information on coastal wetland structure (e.g., patch size and number) are also major metrics for coastal restoration and biodiversity protection, but remain very limited in China's four major river deltas. In this study, we quantified the spatial–temporal dynamics of total area (TA) and patch number (PN) of coastal wetlands with different sizes in the four deltas and the protected areas (PAs) and assessed the effects of major driving factors during 1984–2020. We also investigated the effectiveness of PAs through the comparison of TA and PN of coastal wetlands before and after the years in which PAs were listed as Ramsar Sites. We found both TA and PN experienced substantial losses in the Liaohe River Delta and Yellow River Delta but recent recoveries in the Yangtze River Delta. The coastal wetlands had a relatively stable and variable trend in TA but had a continually increasing trend in PN in the Pearl River Delta. Furthermore, reduced coastal reclamation, ecological restoration projects, and rapid expansion of invasive plants had great impacts on the coastal wetland structure in various ways. We also found that PAs were effective in halting the decreasing trends in coastal wetland areas and slowing the expansion of reclamation, but the success of PAs is being counteracted by soaring exotic plant invasions. Our findings provide vital information for the government and the public to address increasing challenges of coastal restoration, management, and sustainability in large river deltas.  相似文献   

13.
The evaluation of conservation effectiveness for wetland protected areas (WPAs) is essential to underpin knowledge-based conservation policies and funding decisions by government and managers. In this paper, the conservation effectiveness for 28 WPAs in Northeast China from 2000 to 2012 was quantitatively evaluated using landsat thematic mapper image data and a maximum entropy model (Maxent). The spatial distribution of conservation effectiveness and the influence of human activities on conservation effectiveness were determined by combining a landscape development intensity (LDI) index and spatial analysis in a geographical information system. The results showed that the natural wetland area of all WPAs in Northeast China declined by 11.5 % and the conservation effectiveness of most of these WPAs decreased between 2000 and 2012. A significant negative correlation between the LDI index and conservation effectiveness (r = ?0.824, p < 0.01) suggested that human activities were responsible for the low conservation effectiveness of WPAs. The WPAs with the high conservation effectiveness were mainly located in the Da-Xing’an and Xiao-Xing’an Mountains, where anthropogenic activities were limited. The reduction in the conservation effectiveness of WPAs in the Songnen and Sanjiang Plains, which showed the most degradation, was due to conversion of wetlands to croplands. This research offers an efficient and effective method to evaluate the conservation effectiveness of WPAs. The results of this study will inform future ecological conservation and management of WPAs in China.  相似文献   

14.

The San Francisco Bay Area is a leader in environmental stewardship and home to numerous wetland restoration projects including the largest tidal wetland restoration project on the American West Coast. As tidal marsh wetlands are restored throughout the Bay Area many opportunities remain to reaffirm the importance of water management that reduces mosquito production and protects public health. Unlike the early 1900s when long term saltmarsh mosquito control was achieved with large scale surface water management projects, regulatory restrictions produce new hurdles that impact mosquito control and restoration projects alike. Work done in the wetlands surrounding the San Francisco Bay must comply with existing management plans, permit requirements, and government regulations. The same is true for emerging technologies. While unmanned airsystems employed for mosquito control improves efficiency and accuracy, regulations in this arena limit their broad use in wetlands that abut the San Francisco Bay. Mosquito abatement districts collect substantial scientific data that inform land management and mosquito control operations. This information is useful for evaluating wetland restoration progress in the Bay Area and fostering partnerships that keep a public health perspective at the forefront.

  相似文献   

15.
Demand for data on the ecological condition of wetlands is increasing as state and federal management programs recognize its value in reporting on the ambient condition of the resource, targeting restoration and protection efforts, evaluating the effects of mitigation and restoration practices, supporting regulatory decisions, and tracking the impact of land use decisions. We developed an approach for generating a single measure of wetland condition from ecological variables used in hydrogeomorphic (HGM) assessment. An Index of Wetland Condition (IWC) was developed from HGM field data collected to assess freshwater, non-tidal flat, riverine, and depression wetlands in the Nanticoke River watershed. The HGM variables were screened and scored based on a range check, responsiveness, and metric redundancy, employing a method used to develop indices of biotic integrity. Weights of the individual variables were adjusted to reflect our understanding of wetland ecology and to include variables that represented the vegetation, hydrology, and buffer of a wetland. The final IWC score discriminated high, medium, and low site disturbance classes in flat and riverine wetlands and high and low disturbance classes in depressions, one-way ANOVA F-values ranged from 44.5 to 79.1 (all p <0.0001). The combination of the IWC and HGM assessments provides a comprehensive evaluation of the wetland resource. HGM produces information on specific wetland functions. The IWC concisely conveys the ecological condition of the resource and maximizes the utility of the data collected in an HGM assessment.  相似文献   

16.
基于遥感的湿地景观格局季相分析   总被引:1,自引:0,他引:1  
谢静  王宗明  任春颖 《生态学报》2014,34(24):7149-7157
以中国东北地区三江平原北部为研究区域,利用2012年多季相遥感影像作为数据源,结合野外调查数据,应用面向对象的分类方法,根据影像的物候、时相等特征,提取不同月份的湿地信息,进行景观格局季相分析。结果表明:(1)研究区湿地面积、类型格局在同一年不同季节不同月份会有不同幅度的变化,总体呈现缓增骤减的态势。湿地主要分布在低洼地区,主要湿地类型为草本沼泽,其次为河流,其他湿地占总面积比例较小。(2)研究区各阶段湿地都有转化,主要发生在湿地和非湿地之间,多数表现在草本沼泽和草地之间的转化。(3)湿地分布和湿地转化面积主要集中在低海拔区域和低坡度区域,其中海拔100 m和坡度5°以下范围内的湿地分布面积和湿地转化面积占湿地总面积及湿地转化面积的绝大部分。(4)年内季节性湿地转化与降水、温度和湿地植被物候关系密切。  相似文献   

17.
Wetlands cover large areas in the Democratic Republic of the Congo. However, their extent and distribution have not been accurately mapped. While wetland forests remain largely undisturbed, increasing threats by anthropogenic activities have been observed in areas with high population density per arable or exploitable land. The scarcity of terra firma forests in some territories of the Democratic Republic of the Congo has forced local communities to develop cropping methods that allow for cultivation in periodically flooded areas. Assessing wetlands extent and status is critical for long term conservation of these highly vulnerable ecosystems. In this study, we use multi-source and multi-resolution optical and radar remotely sensed data and elevation derived indices to map the wetlands of the Democratic Republic of the Congo. Results showed that wetlands are a significant part of the landscape in the country, covering an estimated 440,000 km2 or 19.2 % of the total country area. By combining the wetlands map with a previously produced land cover depiction of the Democratic Republic of the Congo, a map including forested wetlands as a thematic class was derived. We investigated whether high terra firma population density and low percent remaining terra firma forest are related at the lowest administrative level (Sector); specifically, we tested these two variables as predictors of wetland forest cover loss. A polynomial regression relating population and primary terra firma forest to wetland forest cover loss yielded an r 2 of 0.76, illustrating a nascent and significant land cover change dynamic. Areas most at risk for future wetland forest loss lie in the western Cuvette, and include (north–south) the Sud-Ubangi, Mongala, Equateur and Mai-Ndombe Districts. By quantifying available upland forest resources and overlaying with population density, it was possible to identify stressed areas inside of the forest domain (traditionally known for having generically high levels of forest resources). Results illustrate the need for addressing issues of wetland forest management and protection in the Democratic Republic of the Congo, especially where increasing populations are exhausting primary terra firma forest resources.  相似文献   

18.
Many jurisdictions in North America use a “mitigation sequence” to protect wetlands: First, avoid impacts; second, minimize unavoidable impacts; and third, compensate for irreducible impacts through the use of wetland restoration, enhancement, creation, or protection. Despite the continued reliance on this sequence in wetland decision-making, there is broad agreement among scholars, scientists, policymakers, regulators, and the regulated community that the first and most important step in the mitigation sequence, avoidance, is ignored more often than it is implemented. This paper draws on literature published between 1989 and 2010, as well as 33 semi-structured, key-informant interviews carried out in 2009 and 2010 with actors intimately involved with wetland policy in Alberta, Canada, to address key reasons why “avoidance” as a policy directive is seldom effective. Five key factors emerged from the literature, and were supported by interview data, as being central to the failure of decision-makers to prioritize wetland avoidance and minimization above compensation in the mitigation sequence: (1) a lack of agreement on what constitutes avoidance; (2) current approaches to land-use planning do not identify high-priority wetlands in advance of development; (3) wetlands are economically undervalued; (4) there is a “techno-arrogance” associated with wetland creation and restoration that results in increased wetland loss, and; (5) compensation requirements are inadequately enforced. Largely untested but proactive ways to re-institute avoidance as a workable option in wetland management include: watershed-based planning; comprehensive economic and social valuation of wetlands; and long-term citizen-based monitoring schemes.  相似文献   

19.
《Ecological Indicators》2008,8(3):303-307
The Index of Plant Community Integrity (IPCI) was developed to assess wetland plant communities in the Prairie Pothole Region. The IPCI evaluates the condition of wetland plant communities based on disturbance level and multiple community attributes. However, the index was developed for seasonal wetlands from limited spatial and temporal data. We tested the index for seasonal wetlands and developed an index for temporary and semi-permanent wetlands by evaluating vegetative composition of wetlands throughout the Northern Glaciated Plains and Northwestern Glaciated Plains Ecoregions of South Dakota, North Dakota, and Montana. In 2003 and 2004, we selected wetlands based on classification and type of disturbance, ranging from little disturbance (native rangeland) to heavily disturbed (cropland). We analyzed the data using the IPCI vegetation metrics developed for seasonal wetlands, and further analyzed using nonmetric multidimensional scaling and cluster analyses. All vegetation metrics tested were significant in indicating disturbance level. Based on data analysis, five biologically significant groups related to intensity of disturbance (Very good, Good, Fair, Poor, and Very poor) were determined for seasonal wetlands, and three condition classes (Good, Fair, and Poor) for temporary and semi-permanent wetlands. Score ranges were assigned to the metrics according to the determined classes. Using the IPCI method, wetlands throughout the Northern and Northwestern Glaciated Plains of South Dakota, North Dakota, and Montana may be placed into disturbance classes. This data can then be used for ecological purposes and mitigation needs such as monitoring trends on reclaimed or restored wetlands, regional inventories, and for evaluation of ecological functions.  相似文献   

20.
Abstract. Clonal plants play important roles in maintaining wetland ecosystems in China. By analysing 108 wetland quadrats distributed throughout China, we evaluated (1) the importance of clonal growth forms in different Chinese wetlands, (2) how the abundance of clonal plants is related to climatic and geographical conditions, and (3) how plant species diversity is related to the abundance of clonal plants. Significant differences in clonal plant importance values were found between different regions of China. Clonal plants were more important in wetland ecosystems located towards the West and North and at higher elevations and, accordingly, experiencing a colder and drier climate. Plant species diversity showed a significant inverse correlation with the importance value of ‘guerilla’‐type plants in most of the wetland regions. However, we found no significant correlation between plant species diversity and importance values of ‘phalanx’‐type plants. In most Chinese wetlands, plant species diversity decreased with increasing importance of guerilla plants and also with an increase of the entire guild of clonal plants. In wetlands with low species richness, however, plant species diversity increased with increasing importance of guerilla plants and of all clonal plants together, suggesting that in these disturbed habitats clonal growth may facilitate the establishment of other, non‐clonal wetland plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号