首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Availability of certain habitats or landscape configurations can cause differential habitat selection in animal species. Landscape complexity can affect foraging scales, home ranges and movement, but its effect on habitat selection is not well documented. We aimed to examine differences in colony site selection of herons and egrets in different regions. We studied whether landscape complexities could affect their scale of selection and habitat preferences. We used colony distribution data and land-use maps for two neighboring regions, Ibaraki and Chiba prefectures in Japan, to create random forest models for analyzing habitat preferences and important scales of selection. We did cross-validation of the models, adjusted for its respective region's land-use maps with changing scales. The scales that best explained colony distribution were 1-, 4-, 10- and 15-km in the Ibaraki region, and 1- and 10-km in the Chiba region. Evergreen forest was the most important variable for Ibaraki at 4-km and for the Chiba at 1-km. The importance of other variables differed for other models. Cross-validation showed that herons and egrets had the same habitat preferences at a 4-km scale in Ibaraki and at a 1-km scale in Chiba. The scale of selection was reduced in Chiba, where the main foraging resources for herons and egrets was more complex. Differences in landscape complexities did not affect habitat preferences but resulted in differences in the scale of selection. Habitat selection models created at the landscape level can be useful to study behavioral aspects difficult to describe with direct observation in detail.  相似文献   

2.
Habitat selection in avian species is a hierarchical process driven by different factors acting at multiple scales. Habitat preferences and site fidelity are two main factors affecting how colonial birds choose their breeding locations. Although these two factors affect how colonial species choose their habitats, previous studies have only focused on one factor at a time to explain the distribution of species at regional scales. Here we used 28 yr of colony location data of herons and egrets around Ibaraki prefecture in Japan in order to analyze the relative importance of habitat preferences and colony site fidelity for selecting breeding locations. We used Landsat satellite images together with a ground survey‐based map to create land‐use maps for past years and determine the habitats surrounding the herons and egrets colonies. Combining the estimated colony site fidelity with the habitat data, we used a random forest algorithm to create habitat selection models, which allowed us to analyze the changes in the importance of those factors over the years. We found high levels of colony site fidelity for each year of study, with its relative importance as a predictor for explaining colony distribution increasing drastically in the most recent five years. The increase in collective site fidelity could have been caused by recent changes in the population size of grey herons Ardea cinerea, a key species for colony establishment. We observed a balance between habitat preferences and colony site fidelity: habitat preferences were a more powerful predictor of colony distribution until 2008, when colony site fidelity levels were lower. Considering changes in the relative importance of these factors can lead to a better understanding of the habitat selection process and help to analyze bird species’ responses to environmental changes.  相似文献   

3.
Aim To investigate the relative role of local versus landscape factors for local species diversity of snails and slugs in conservation forests. In landscapes with small, isolated patches of semi‐natural habitats, many species that require large habitat areas have disappeared or are threatened. We asked whether small sedentary taxa that depend on local conditions, such as molluscs, are affected if total habitat area decreases in the landscape. Location Temperate broadleaved and oak‐rich forest in southern Sweden. Methods We sampled molluscs in 25 small conservation forests that are well‐spaced out over a large region. In each forest, sampling was conducted in two plots, each of 1 ha, separated by about 25–100 m. Factors potentially influencing local diversity of molluscs were measured in the plots and in the surrounding landscape at different scales (in space and time) and were analysed by stepwise multiple regression and ordination (PCA and NMS). Results We recorded 53 species, and mean species richness per forest (plots pooled) was 22.6. The pH of the plant litter predicted both species richness and composition; other local (plot) factors of lower importance were canopy openness, stony ground and tree species. The area of conservation forest (woodland key habitat) within 10 km of plots was positively associated with species richness, and was also related to species composition. Openness of the landscape (agriculture) was a negative factor, but historical plot openness (1938–59) seemed to be unimportant. In addition, climate/topography (temperature and altitude) also predicted species composition of the sites. Main conclusions We rejected the hypothesis that microhabitat factors alone, or mainly, determine local species richness and composition of land molluscs. These representatives of small, sedentary organisms seem to be substantially influenced by the surrounding landscape, which should be considered in conservation work and in plans for the protection of forest biodiversity.  相似文献   

4.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

5.
Mature forests have structural habitat features that can take hundreds of years to develop, and large reserves alone are unlikely to ensure conservation of the species that rely on these features. This paper outlines a proposed new approach to managing mature forest features, the ‘mature habitat management approach’, in areas outside of reserves. The objective was to maintain a network of current and future mature forest habitat distributed across the landscape. The approach is designed to complement the existing reserve network and management actions and is tenure‐blind. Spatial information on the availability of mature forest habitat at the local (1‐km radius) and landscape (5‐km radius) scales is used for decisions on retention within a 1‐km radius of a harvest area, to reach the minimum target of 20% and 30% retention of mature forest at the local and landscape spatial scales, respectively. We believe this approach could contribute to meeting the conservation needs of many species that require mature forest features for refuge and breeding in Tasmania and elsewhere.  相似文献   

6.
The conservation of any species requires understanding and predicting the distribution of its habitat and resource use, including the effects of scale‐dependent variation in habitat and resource quality. Consequently, testing for resource selection at the appropriate scales is critical. We investigated how the resource selection process varies across scales, using koalas in a semi‐arid landscape of eastern Australia as a case study. We asked: at what scales does tree selection by koalas vary across regions? We tested the importance of the variation of our ecological predictors at the following scales: (i) the site‐scale (a stand of trees representing an individual koala's perception of local habitat); (ii) the landscape‐scale (10 × 10 km area representing a space within which a population of koalas exists); and (iii) a combination of these scales. We used a mixed‐modelling approach to quantify variation in selection of individual trees by koalas among sites and landscapes within a 1600 km2 study area. We found that tree species, and tree height, were the most important factors influencing tree selection, and that their effect did not vary across scales. In contrast, preferences for trees of different condition, which is the state of tree canopy health, did vary across landscapes, indicating spatial variation in the selection of trees with respect to tree condition at the landscape‐scale, but not at the site‐scale. We conclude that resource selection processes can depend on the quality of those resources at different scales and their heterogeneous nature across landscapes, highlighting the consequence of scale‐dependent ecological processes. Designing studies that capture the heterogeneity in habitat and resources used by species that have an extensive distribution is an important prerequisite for effective conservation planning and management.  相似文献   

7.
The Caribbean region is one of the five leading biodiversity hotspots in the world. Analysis of the spatial structure of critical habitats and how it affects endemic species in this region is essential baseline information for biodiversity monitoring and management. We quantified and evaluated the spatial structure and connectivity of depression forests on Mona Island and their potential impact on Mona Island rock iguana habitat, as a framework to assess spatial distribution, connectivity, and the issue of scale in small and widely dispersed habitats. Using IKONOS imagery, we mapped and delineated depression forests at four different scales (minimum mapping units: <100, 100, 500, and 1,000 m), and calculated landscape metrics describing their spatial structure, and connectivity, for each map resolution. Our approach resulted in a more detailed map than previously described maps, providing better information on habitat connectivity for iguanas. The comparison of the island landscape mapped at different scales provided evidence on how changing scales affect the output of spatial metrics and may have a significant impact when planning decisions and assigning conservation priorities. It also highlighted the importance of adequate ecological scales when addressing landscape management and conservation priorities. The analysis of landscapes at multiple scales provided a mechanism to evaluate the role of patch detection and its effect on the interpretation of connectivity and spatial structure of suitable areas for species with small and widely dispersed habitats. These methodologies can be applied other species, in different environments, with similar limitations related to connectivity and habitat availability.  相似文献   

8.
Quantifying how human-modified landscapes shape the distribution of biodiversity is critical for developing effective conservation strategies. To address this, we evaluated three hypotheses (habitat area, habitat configuration and matrix heterogeneity hypotheses) that predict responses of biodiversity to landscape structure in human-modified landscapes. We compared characteristics of landscape structure that influence taxonomic (TD), functional (FD), and phylogenetic (PD) dimensions of biodiversity of breeding birds in temperate forests. Relationships between biodiversity and landscape structure were assessed at multiple spatial scales for 20 forest interior sites in northeastern USA. We assessed if relationships with landscape structure were consistent among dimensions and assemblages of different groups (residents, migrants and all birds). Relationships between dimensions of biodiversity and landscape structure were more prevalent for FD and PD than for TD. Forest amount and configuration were rarely associated with any dimensions of biodiversity. In contrast, the identity of the matrix and heterogeneity of the landscape were frequently associated with biodiversity, but relationships differed among groups of birds. For example, FD of all birds was associated positively with landscape diversity but FD of residents was associated negatively with landscape diversity, suggesting that landscape diversity surrounding forests may increase overall FD of birds but that not all groups of species respond similarly. Indeed, biodiversity of migrants was only weakly related to landscape structure. Differences among relationships to landscape structure for bird groups and spatial scales suggests that management plans should consider local decisions within a regional framework to balance potentially conflicting needs of species groups in human-dominated landscapes.  相似文献   

9.
AimAs habitat loss continues to accelerate with global human population growth, identifying landscape characteristics that influence species occurrence is a key conservation priority in order to prevent global biodiversity loss. In South Africa, the arboreal samango monkey (Cercopithecus albogularis sp.) is threatened due to loss and fragmentation of the indigenous forests it inhabits. The aim of this study was to determine the habitat preferences of the samango monkey at different spatial scales, and to identify key conservation areas to inform management plans for this species.LocationThis study was carried out in the western Soutpansberg Mountains, which represents the northernmost population of samango monkeys within South Africa, and the only endangered subspecies (C. aschwarzi).MethodsWe used sequentially collected GPS points from two samango monkey groups followed between 2012 and 2017 to quantify the used and available habitat for this species within the western Soutpansberg Mountains. We developed 2nd‐order (selection of ranging area), 3rd‐order (selection within range), and 4th‐order (feeding site selection) resource selection functions (RSFs) to identify important habitat features at each scale. Through scale integration, we identified three key conservation areas for samango monkeys across Limpopo Province, South Africa.ResultsHabitat productivity was the most important landscape variable predicting probability of use at each order of selection, indicating the dependence of these arboreal primates on tall‐canopy indigenous forests. Critical habitat across Limpopo was highly fragmented, meaning complete isolation between subpopulations is likely.Main conclusionsUnderstanding the habitat characteristics that influence samango monkey distribution across South Africa is crucial for prioritizing critical habitat for this species. Our results indicated that large, contiguous patches of tall‐canopy indigenous forest are fundamental to samango monkey persistence. As such, protected area expansion of large forest patches and creation of forest corridors are identified as key conservation interventions for this species.  相似文献   

10.
Abstract: Considering habitat selection at multiple scales is essential to fully understand habitat requirements and management needs for wildlife species of concern. We used a hierarchical information-theoretic approach and variance decomposition techniques to analyze habitat selection using local-scale habitat variables measured in the field and landscape-scale variables derived with a Geographic Information System (GIS) for nesting greater sage-grouse (Centrocercus urophasianus) in the Powder River Basin (PRB), Montana and Wyoming, USA, 2003–2007. We investigated relationships between habitat features that can and cannot be mapped in a GIS to provide insights into interpretation of landscape-scale—only GIS models. We produced models of habitat selection at both local and landscape scales and across scales, yet multiscale models had overwhelming statistical and biological support. Variance decomposition showed that local-scale measures explained the most pure variation (50%) in sage-grouse nesting-habitat selection. Landscape-scale features explained 20% of pure variation and shared 30% with local-scale features. Both local- and landscape-scale habitat features are important in sage-grouse nesting-habitat selection because each scale explained both pure and shared variation. Our landscape-scale model was accurate in predicting priority landscapes where sage-grouse nests would occur and is, therefore, useful in providing landscape context for management decisions. It accurately predicted locations of independent sage-grouse nests (validation R2 = 0.99) and showed good discriminatory ability with >90% of nests located within only 40% of the study area. Our landscape-scale model also accurately predicted independent lek locations. We estimated twice the amount of predicted nesting habitat within 3 km of leks compared to random locations in the PRB. Likewise we estimated 1.8 times more predicted nesting habitat within 10 km of leks compared to random locations. These results support predictions of the hotspot theory of lek placement. Local-scale habitat variables that cannot currently be mapped in a GIS strongly influence sage-grouse nest-site selection, but only within priority nesting habitats defined at the landscape scale. Our results indicate that habitat treatments for nesting sage-grouse applied in areas with an unsuitable landscape context are unlikely to achieve desired conservation results.  相似文献   

11.
Conservation planning with insects at three different spatial scales   总被引:1,自引:0,他引:1  
Deciding which areas to protect, and where to manage and how, are no easy tasks. Many protected areas were established opportunistically under strong political and economic constraints, which may have resulted in inefficient and ineffective conservation. Systematic conservation planning has helped us move from ad-hoc decisions to a quantitative and transparent decision-making process, identifying conservation priorities that achieve explicit objectives in a cost-efficient manner. Here we use Finnish butterflies to illustrate different modeling approaches to address three different types of situations in conservation planning at three different spatial scales. First, we employ species distribution models at the national scale to construct a conservation priority map for 91 species at the resolution of 10×10  km. Species distribution models interpolate sparse occurrence data to infer variation in habitat suitability and to predict species responses to habitat loss, management actions and climate change. Second, at the regional scale we select the optimal management plan to protect a set of habitat specialist species. And third, at the landscape scale, we use a metapopulation approach to manage a network of habitat patches for long-term persistence of a single butterfly species. These different modeling approaches illustrate trade-offs between complexity and tractability and between generality and precision. General correlation-based models are helpful to set priorities for multiple species at large spatial scales. More specific management questions at smaller scales require further data and more complex models. The vast numbers of insect species with diverse ecologies provide a source of information that has remained little used in systematic conservation planning.  相似文献   

12.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

13.
Land‐cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi‐taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape‐scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among‐site and among‐landscape β‐diversity appeared to attenuate species loss at larger scales. We found consistently high levels of β‐diversity among landscapes for all land cover classes, providing support for landscape‐scale divergence in species composition. Our findings support concerns that β‐diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.  相似文献   

14.
Bird conservation can be challenging in landscapes with high habitat turnover such as planted forests, especially for species that require large home ranges and juxtaposition of different habitats to complete their life cycle. The eurasian hoopoe (Upupa epops) has declined severely in western Europe but is still abundant in south-western France. We studied habitat selection of hoopoes in pine plantation forests using a multi-scale survey, including point-counts at the landscape level and radio-tracking at the home-range scale. We quantified habitat use by systematically observing bird behaviour and characterized foraging sites according to micro-habitat variables and abundance of the main prey in the study area, the pine processionary moth (Thaumetopoea pityocampa). At the landscape scale, hoopoes selected habitat mosaics of high diversity, including deciduous woods and hedgerows as main nesting sites. At the home-range scale, hoopoes showed strong selection for short grassland vegetation along sand tracks as main foraging habitats. Vegetation was significantly shorter and sparser at foraging sites than random, and foraging intensity appeared to be significantly correlated with moth winter nest abundance. Hoopoe nesting success decreased during the three study years in line with processionary moth abundance. Thus, we suggest that hoopoes need complementation between foraging and breeding habitats to establish successfully in pine plantations. Hoopoe conservation requires the maintenance of adjacent breeding (deciduous woods) and foraging habitats (short swards adjacent to plantation edges), and consequently depends on the maintenance of habitat diversity at the landscape scale.  相似文献   

15.
We examine existing and developing approaches to balance biodiversity conservation and timber production with the changing conservation roles of federal and nonfederal forest land ownerships in the US Pacific Northwest. At landscape scales, implementation of the reserve-matrix approach of the federal Northwest Forest Plan in 1994 was followed by proposals of alternative designs to better integrate disturbance regimes or to conserve biodiversity in landscapes of predominantly young forests through active management without reserves. At stand scales, landowners can improve habitat heterogeneity through a host of conventional and alternative silvicultural techniques. There are no state rules that explicitly require biodiversity conservation on nonfederal lands in the region. However, state forest practices rules require retention of structural legacies to enhance habitat complexity and establishment of riparian management areas to conserve aquatic ecosystems. Habitat Conservation Plans (HCPs) under the US Endangered Species Act provide regulatory incentives for nonfederal landowners to protect threatened and endangered species. A state-wide programmatic HCP has recently emerged as a multi-species conservation approach on nonfederal lands. Among voluntary incentives, the Forest Stewardship Council certification comprehensively addresses fundamental elements of biodiversity conservation; however, its tough conservation requirements may limit its coverage to relatively small land areas. Future changes in landscape management strategies on federal lands may occur without coordination with nonfederal landowners because of the differences in regulatory and voluntary incentives between ownerships. This raises concerns when potentially reduced protections on federal lands are proposed, and the capacity of the remaining landscape to compensate has been degraded.  相似文献   

16.
The factors shaping the ways in which animals use resources are a key element of conservation biology, but ecological studies on resource use typically neglect to consider how the study’s spatial scale may have affected the outcomes. We used the dryad butterfly, inhabiting xerothermic grassland and wet meadow, to test for differences in its resource use at two scales–habitat patch and landscape. Based on records of plant species composition from random points within four habitat patches and from points in 53 patches along surveyed transects, we compared the microhabitat preferences of the butterfly on the patch scale, and species occurrence and abundance patterns on the landscape scale. We distinguished four main groups of factors related to vegetation structure which affected the butterfly’s resource use—factors having similar effects on both spatial scales, factors operating primarily on one of the scales considered, factors relevant only on a single spatial scale, and factors operating on both scales but with effects differing between the two habitat types. We suggest that invertebrates may respond on two spatial levels or on only one, and conclude that larger-scale studies can meet the challenges of a sophisticated metapopulation approach and can give insight into the habitat characteristics affecting the persistence of species in landscapes. We stress the value of large-scale studies on species’ habitat preferences when planning conservation strategies, while pointing out that small-scale studies provide useful information about species ecology and behavior, especially if conducted in multiple habitats.  相似文献   

17.
Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments.  相似文献   

18.
Naturally dynamic forests have a high proportion of biotopes with old large trees, diverse vertical and horizontal structure at multiple scales, and much dead wood. As such, they provide habitat to species and ecosystem processes that forests managed for wood production cannot provide to the same degree. Whether termed old-growth, ancient, virgin, intact, primeval or continuity forests, a major challenge and need is to map such potential high conservation value forest for subsequent inclusion in functional habitat networks for biodiversity conservation in forest landscapes. Given that the delivery time of natural forest properties is much longer than of industry wood, we explore the usefulness of using historical maps to identify forests that have been continuously present for 220 years (potential old-growth) versus 140 years (potential aging forest) in a case study in the Romanian Carpathian Mountains (see Online Resource 1). While the total forest cover increased by 35 % over the past two centuries, the area of potential aging and potential old-growth forest declined by 56 and 34 %, respectively. Spatial modelling of edge effects and patch size for virtual species with different requirements indicated an even greater decrease in the area of functional habitat networks of old-growth and ageing forest. Our analyses show that compared to simple mapping of potential high conservation forests, the area of functional habitat patches is severely overestimated, and caution is needed when estimating the area of potential high conservation value forests that form functional habitat networks, i.e. a green infrastructure. In addition, the landscape and regional scale connectivity of patches needs to be considered. We argue that the use of historical maps combined with assessment of spatial patterns is an effective tool for identifying and analyzing potential high conservation value forests in a landscape context.  相似文献   

19.
Extant species in human‐dominated landscapes differ in their sensitivity to habitat loss and fragmentation, although extinctions induced by environmental alteration reduce variation and result in a surviving subset of species with some degree of ‘resistance’. Here, we test the degree to which variable responses to habitat alteration are (1) essentially an inherent property of a taxon subject to constraints imposed by its geographical range, as suggested by Swihart et al. (2003), (2) a function of the landscape in which a species occurs, or (3) a function of spatial trends occurring on large scales. We used data collected on 33 vertebrate species during 2001–04 across the upper Wabash River basin, Indiana, in 35 square ‘landscapes’, each 23 km2 in size. Six species of forest rodent, six species of grassland rodents, seven species of bats, eight species of aquatic turtles, and six species of amphibians were sampled at 504, 212, 590, 228, and 625 patches, respectively. The fraction of patches of primary habitat (e.g. forests for tree squirrels, wetlands for aquatic turtles) occupied by a target species was used as a response variable. On a basin‐wide scale, 47% of variation in proportional occupancy among species could be explained by taxon‐specific variables; occupancy rates were related positively to niche breadth and negatively to the proximity of a geographical range boundary. After controlling for species effects, landscape‐level occupancy rates varied significantly for 16 of 33 species, with variation partitioned among landscape variables alone (mean = 11% of variation), spatial trend variables alone (26%), and both variable sets jointly (8%). Among landscape variables, percentage forest cover positively affected occupancy rates of three bat species and a tree squirrel. Variation in occupancy rates among landscapes was consistent with large‐scale spatial trends for 13 species. Our findings demonstrate the general importance of niche breadth as a predictor of species responses to habitat alteration and highlight the importance of viewing the effects of habitat loss and fragmentation at multiple spatial scales.  相似文献   

20.
Coupling habitat models based on GIS and on ground variables could help identify suitable areas (by means of landscape models obtained by GIS variables) to concentrate management actions for species’ conservation. In this study, the habitat requirements of Lesser Greys (LGS) and Woodchat Shrikes (WS), two threatened farmland bird species declining in Europe, were assessed in Apulia (south-eastern Italy) by means of binary logistic regression at two different levels: landscape (using GIS-measured variables); and, territory (using ground-measured variables) scales. The LGS occurrence at landscape scale was correlated to steppe-like areas and cereal crops. At the territory level, significant effects were detected for deciduous forests and the presence of isolated trees and shrubs. The WS occurrence at landscape scale was promoted by steppe-like areas and cereal crops, whereas, at the territory level significant effects were detected for steppe-like areas positively and suburban areas negatively. The landscape model was extrapolated to the entire region. Within highly suitable areas (occurrence probability higher than 0.66 according to the landscape model), we measured average habitat features and compared them with the optimal mosaic depicted by the territory level models. This allowed us to give spatially explicit and site-specific management recommendations for these two threatened species. LGS will mostly benefit from an increase in isolated shrubs and trees; whereas for WS, the most widespread recommendations are to increase steppe-like habitat and to prevent further urbanisation.Coupling “coarse” landscape models with the species ecology provided by fine-scaled models can integrate relevant information on species potential distribution and territory level requirements, making planning fine-tuned habitat management (within potentially suitable landscapes) in a spatially explicit way possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号