首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Themodynamic and transport properties of intermediate states of the photocyclic reaction of photoactive yellow protein (PYP) were studied by a combination of the pulsed laser-induced transient grating (TG), transient lens (TrL), and photoacoustic (PA) spectroscopies from tens of nanoseconds to hundreds of milliseconds. The diffusion coefficients (D) of PYP in the ground state (pG) and of the second intermediate state (pB) were determined by the TG analysis, and it was found that D of pG is about 1.2 times larger than D of pB. At the same time, D at various denatured conditions were measured using guanidine hydrochloride as the denaturant. D of completely unfolded protein is about 0.4 times that of the native form. The enthalpy of pB is estimated to be 60 kJ/mol by the TrL method with an assumption that the volume change of pB is not sensitive to the temperature. Since the enthalpy of the first intermediate state (pR) is as high as 160 kJ/mol, it implies that most of the photon energy is stored as the strain of the protein in pR, and this may be the driving force for the successive reaction to pB. From the temperature dependence of the volume change, the difference in the thermal expansion coefficients between pG and pR was calculated. All of the characteristic features of PYP, the negative volume change, the larger thermal expansion coefficient, and the slower diffusion process, indicate that the intermediate pR and pB are reasonably interpreted in terms of the unfolded (loosened) protein structure.  相似文献   

2.
The Photoactive Yellow Protein (PYP) from Halorhodospira halophila (formerly Ectothiorhodospira halophila) is increasingly used as a model system. As such, a thorough understanding of the photocycle of PYP is essential. In this study we have combined information from pOH- (or pH-) dependence and (kinetic) deuterium isotope effects to elaborate on existing photocycle models. For several characteristics of PYP we were able to make a distinction between pH- and pOH-dependence, a nontrivial distinction when comparing data from samples dissolved in H2O and D2O. It turns out that most characteristics of PYP are pOH-dependent. We confirmed the existence of a pB′ intermediate in the pR to pB transition of the photocycle. In addition, we were able to show that the pR to pB′ transition is reversible, which explains the previously observed biexponential character of the pR-to-pB photocycle step. Also, the absorption spectrum of pB′ is slightly red-shifted with respect to pB. The recovery of the pG state is accompanied by an inverse kinetic deuterium isotope effect. Our interpretation of this is that before the chromophore can be isomerized, it is deprotonated by a hydroxide ion from solution. From this we propose a new photocycle intermediate, pBdeprot, from which pG is recovered and which is in equilibrium with pB. This is supported in our data through the combination of the observed pOH and pH dependence, together with the kinetic deuterium isotope effect.  相似文献   

3.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   

4.
The photocycle of the blue-light photoreceptor protein Photoactive Yellow Protein (PYP) was studied at reduced relative humidity (RH). Photocycle kinetics and spectra were measured in thin films of PYP in which the relative humidity was set at values between 29 and 98% RH with saturated solutions of various salts. We show that in this range, approximately 200 water molecules per PYP molecule are released from the film. As humidity decreased, photocycle transition rates changed, until at low humidity (RH < 50%) an authentic photocycle was no longer observed and the absorption spectrum of the dark, equilibrium state of PYP started to shift to 355 nm, that is, to a form resembling that of pB(dark). At moderately reduced humidity (i.e., >50% RH), an authentic photocycle is still observed, although its characteristics differ from those in solution. As humidity decreases, the rate of ground state recovery increases, while the rate of depletion of the first red-shifted intermediate pR dramatically decreases. The latter observation contrasts all so-far known modulations of the rate of the transition of the red-shifted- to the blue-shifted intermediates of PYP, which is consistently accelerated by all other modulations of the mesoscopic context of the protein. Under these same conditions, the long-lived, blue-shifted intermediate was formed not only with slower kinetics than in solution but also to a smaller extent. Global analysis of these data indicates that in this low humidity environment the photocycle can take a different route than in solution, that is, part of pG recovers directly from pR. These experiments on wild-type PYP, in combination with observations on a variant of PYP obtained by site-directed mutagenesis (the E46Q mutant protein), further document the context dependence of the photocycle transitions of PYP and are relevant for the interpretation of results obtained in both spectroscopic and diffraction studies with crystalline PYP.  相似文献   

5.
The energetics, protein dynamics, and diffusion coefficients of three mutants of photoactive yellow protein, R52Q, P68A, and W119G, were studied by the transient grating and pulsed laser-induced photoacoustic method. We observed a new dynamics with a lifetime of approximately 1 micro s in the transient grating signal, which is silent by the light absorption technique. This fact indicates that, after the structure change around the chromophore is completed (pR(1)), the protein part located far from the chromophore is still moving to finally create another pR (pR(2)) species, which can transform to the next intermediate, pB. Although the kinetics of pR(2)-->pB-->pG are very different depending on the mutants, the enthalpies of the first long-lived (in micro seconds, 100-micro s range) intermediate species (pR(2)) are similar and very high for all mutants. The diffusion coefficients of the parent (pG) and pB species of the mutants are also similar to that of the wild-type photoactive yellow protein. From the temperature dependence of the volume change, the difference in the thermal expansion coefficients taken as indicator of the flexibility of the structure between pG and pR(2) is measured. They are also similar to that of the wild-type photoactive yellow protein. These results suggest that the protein structures of pR(2) and pB in these mutants are globally different from that of pG, and this structural change is not altered so much by the single amino acid residue mutation. This is consistent with the partially unfolded nature of these intermediate species. On the other hand, the volume changes during pR(1)-->pR(2) are sensitive to the mutations, which may suggest that the volume change reflects a rather local character of the structure, such as the chromophore-protein interaction.  相似文献   

6.
Fourier transform infrared (FTIR) spectroscopy was applied to the blue-light photoreceptor photoactive yellow protein (PYP) to investigate water structural changes possibly involved in the photocycle of PYP. Photointermediates were stabilized at low temperature, and difference IR spectra were obtained between intermediate states and the original state of PYP (pG). Water structural changes were never observed in the >3570 cm(-)(1) region for the intermediates stabilized at 77-250 K, such as the red-shifted pR and blue-shifted pB intermediates. In contrast, a negative band was observed at 3658 cm(-)(1) in the pB minus pG spectrum at 295 K, which shifts to 3648 cm(-)(1) upon hydration with H(2)(18)O. The high frequency of the O-H stretch of water indicates that the water O-H group does not form hydrogen bonds in pG, and newly forms these upon pB formation at 295 K, but not at 250 K. Among 92 water molecules in the crystal structure of PYP, only 1 water molecule, water-200, is present in a hydrophobic core inside the protein. The amide N-H of Gly-7 and the imidazole nitrogen atom of His-108 are its possible hydrogen-bonding partners, indicating that one O-H group of water-200 is free to form an additional hydrogen bond. The water band at 3658 cm(-)(1) was indeed diminished in the H108F protein, which strongly suggests that the water band originates from water-200. Structural changes of amide bands in pB were much greater in the wild-type protein at 295 K than at 250 K or in the H108F protein at 295 K. The position of water-200 is >15 A remote from the chromophore. Virtually no structural changes were reported for regions larger than a few angstroms away from the chromophore, in the time-resolved X-ray crystallography experiments on pB. On the basis of the present results, as well as other spectroscopic observations, we conclude that water-200 (buried in a hydrophobic core in pG) is exposed to the aqueous phase upon formation of pB in solution. In neither crystalline PYP nor at low temperature is this structural transition observed, presumably because of the restrictions on global structural changes in the protein under these conditions.  相似文献   

7.
The primary photochemical event of photoactive yellow protein (PYP) was studied by laser flash photolysis experiments on a subpicosecond-nanosecond time scale. PYP was excited by a 390-nm pulse, and the transient difference absorption spectra were recorded by a multichannel spectrometer for a more reliable spectral analysis than previously possible. Just after excitation, an absorbance decrease due to the stimulated emission at 500 nm and photoconversion of PYP at 450 nm were observed. The stimulated emission gradually shifted to 520 nm and was retained up to 4 ps. Then, the formation of a red-shifted intermediate with a broad absorption spectrum was observed from 20 ps to 1 ns. Another red-shifted intermediate with a narrow absorption spectrum was formed after 2 ns and was stable for at least 5 ns. The latter is therefore believed to correspond to I1 (PYP(L)), which has been detected on a nanosecond time scale or trapped at -80 degrees C. Singular value decomposition analysis demonstrated that the spectral shifts observed from 0.5 ps to 5 ns could be explained by two-component decay of excited state(s) and conversion from PYP(B) to PYP(L). The amount of PYP(L) at 5 ns was less than that of photoconverted PYP, suggesting the formation of another intermediate, PYP(H). In addition, the absorption spectra of these intermediates were calculated based on the proposed reaction scheme. Together, these results indicate that the photocycle of PYP at room temperature has a branched pathway in the early stage and is essentially similar to that observed under low-temperature spectroscopy.  相似文献   

8.
Stark (electroabsorption) spectra of the M100A mutant of photoactive yellow protein reveal that the neutral, cis cofactor of the pB intermediate undergoes a strikingly large change in the static dipole moment (|Deltamu| = 19 Debye) on photon absorption. The formation of this charge-separated species, in the excited state, precedes the cis --> trans isomerization of the pB cofactor and the regeneration of pG. The large |Deltamu|, reminiscent of that produced on the excitation of pG, we propose, induces twisting of the cis cofactor as a result of translocation of negative charge, from the hydroxyl oxygen, O1, toward the C7-C8 double bond. The biological significance of this photoinduced charge transfer reaction underlies the significantly faster regeneration of pG from pB in vitro, on the absorption of blue light.  相似文献   

9.
Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in 相似文献   

10.
Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in </=3 ps after 452 nm excitation (5 ps pulse width) of PYP. Kinetic analysis shows that I0 decays with a 220 +/- 20 ps lifetime, forming another intermediate (Idouble dagger0) that has a similar difference wavelength maximum, but with lower absorptivity. Idouble dagger0 decays with a 3 +/- 0.15 ns time constant to form I1. Stimulated emission from an excited electronic state of PYP is observed both within the 4-6-ps cross-correlation times used in this work, and with a 16-ps delay for all probe wavelengths throughout the 426-525-nm region studied. These transient absorption and emission data provide a more detailed understanding of the mechanistic dynamics occurring during the PYP photocycle.  相似文献   

11.
As a bacterial blue light sensor the photoactive yellow protein (PYP) undergoes conformational changes upon signal transduction. The absorption of a photon triggers a series of events that are initially localized around the protein chromophore, extends to encompass the whole protein within microseconds, and leads to the formation of the transient pB signaling state. We study the formation of this signaling state pB by molecular simulation and predict its solution structure. Conventional straightforward molecular dynamics is not able to address this formation process due to the long (microsecond) timescales involved, which are (partially) caused by the presence of free energy barriers between the metastable states. To overcome these barriers, we employed the parallel tempering (or replica exchange) method, thus enabling us to predict qualitatively the formation of the PYP signaling state pB. In contrast to the receptor state pG of PYP, the characteristics of this predicted pB structure include a wide open chromophore-binding pocket, with the chromophore and Glu(46) fully solvent-exposed. In addition, loss of alpha-helical structure occurs, caused by the opening motion of the chromophore-binding pocket and the disruptive interaction of the negatively charged Glu(46) with the backbone atoms in the hydrophobic core of the N-terminal cap. Recent NMR experiments agree very well with these predictions.  相似文献   

12.
We have studied the kinetics of the blue light-induced branching reaction in the photocycle of photoactive yellow protein (PYP) from Ectothiorhodospira halophila, by nanosecond time-resolved UV/Vis spectroscopy. As compared to the parallel dark recovery reaction of the presumed blue-shifted signaling state pB, the light-induced branching reaction showed a 1000-fold higher rate. In addition, a new intermediate was detected in this branching pathway, which, compared to pB, showed a larger extinction coefficient and a blue-shifted absorption maximum. This substantiates the conclusion that isomerization of the chromophore is the rate-controlling step in the thermal photocycle reactions of PYP and implies that absorption of a blue photon leads to cis-->trans isomerization of the 4-hydroxy-cinnamyl chromophore of PYP in its pB state.  相似文献   

13.
We report a comparative study of the isomerization reaction in native and denatured photoactive yellow protein (PYP) and in various chromophore analogues in their trans deprotonated form. The excited-state relaxation dynamics was followed by subpicosecond transient absorption and gain spectroscopy. The free p-hydroxycinnamate (pCA(2-)) and its amide analogue (pCM(-)) are found to display a quite different transient spectroscopy from that of PYP. The excited-state deactivation leads to the formation of the ground-state cis isomer without any detectable intermediate with a mechanism comparable to trans-stilbene photoisomerization. On the contrary, the early stage of the excited-state deactivation of the free thiophenyl-p-hydroxycinnamate (pCT(-)) and of the denatured PYP is similar to that of the native protein. It involves the formation of an intermediate absorbing in the spectral region located between the bleaching and gain bands in less than 2 ps. However, in these two cases, the formation of the cis isomer has not been proved yet. This difference with pCA(-) and pCM(-) might result from the fact that, in the thioester substituted chromophore, simultaneous population of two quasi-degenerate excited states occurs upon excitation. This comparative study highlights the determining role of the chromophore structure and of its intrinsic properties in the primary molecular events in native PYP.  相似文献   

14.
The photodetachment of NO from [M(II)(CN)5NO]2- with M = Fe, Ru, and Os, upon laser excitation at various wavelengths (355, 420, and 480 nm) was followed by various techniques. The three complexes showed a wavelength-dependent quantum yield of NO production Phi(NO), as measured with an NO-sensitive electrode, the highest values corresponding to the larger photon energies. For the same excitation wavelength the decrease of Phi(NO) at 20 degrees C in the order Fe > Ru > Os, is explained by the increasing M-N bond strength and inertness of the heavier metals. Transient absorption data at 420 nm indicate the formation of the [M(III)(CN)5H2O]2- species in less than ca. 1 micros for M = Fe and Ru. The enthalpy content of [Fe(III)(CN)5H2O]2- with respect to the parent [Fe(II)(CN)5NO]2- state is (190 +/- 20) kJ mol(-1), as measured by laser-induced optoacoustic spectroscopy (LIOAS) upon excitation at 480 nm. The production of [Fe(III)(CN)5H2O]2- is concomitant with an expansion of (8 +/- 3) ml mol(-1) consistent with an expansion of the water bound through hydrogen bonds to the CN ligands plus the difference between NO release into the bulk and water entrance into the first coordination sphere. The activated process, as indicated by the relatively strong temperature dependence of the Phi(NO) values and by the temperature dependence of the appearance of the [Fe(III)(CN)5H2O]2- species, as determined by LIOAS, is attributed to NO detachment in less than ca. 100 ns from the isonitrosyl (ON) ligand (MS1 state).  相似文献   

15.
Conformational changes in the light illuminated intermediate (pB) of photoactive yellow protein (PYP) were studied from a viewpoint of the diffusion coefficient (D) change of several N-truncated PYPs, which lacked the N-terminal 6, 15, or 23 amino acid residues (T6, T15, and T23, respectively). For intact PYP (i-PYP), D of pB (D(pB)) was approximately 11% lower than that (D(pG)) of the ground state (pG) species. The difference in D (D(pG) - D(pB)) decreased upon cleavage of the N-terminal region in the order of i-PYP>T6>T15>T23. This trend clearly showed that conformational change in the N-terminal group is the main reason for the slower diffusion of pB. This slower diffusion was interpreted in terms of the unfolding of the two alpha-helices in the N-terminal region, increasing the intermolecular interactions due to hydrogen bonding with water molecules. The increase in friction per one residue by the unfolding of the alpha-helix was estimated to be 0.3 x 10(-12) kg/s. The conformational change in the N-terminal group upon photoillumination is discussed.  相似文献   

16.
Molecular dynamics simulation techniques together with time-dependent density functional theory calculations have been used to investigate the effect of photon absorption by a 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. The calculations suggest that the protein not only modifies the absorption spectrum of the chromophore but also regulates the subsequent isomerization of the chromophore by stabilizing the isomerization transition state. Although signaling from PYP is thought to involve partial unfolding of the protein, the mechanical effects accompanying isomerization do not appear to directly destabilize the protein.  相似文献   

17.
Transient absorption spectroscopy in the time range from -1 ps to 4 ns, and over the wavelength range from 420 to 550 nm, was applied to the Glu46Gln mutant of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila. This has allowed us to elucidate the kinetic constants of excited state formation and decay and photochemical product formation, and the spectral characteristics of stimulated emission and the early photocycle intermediates. Both the quantum efficiency ( approximately 0.5) and the rate constants for excited state decay and the formation of the initial photochemical intermediate (I(0)) were found to be quite similar to those obtained for wild-type PYP. In contrast, the rate constants for the formation of the subsequent photocycle intermediates (I(0)(double dagger) and I(1)), as well as for I(2) and for ground state regeneration as determined in earlier studies, were found to be from 3- to 30-fold larger. The structural implications of these results are discussed.  相似文献   

18.
Molecular dynamics simulations were carried out to study what happens in a photoreceptor protein, photoactive yellow protein (PYP), immediately after the vertical transition of the chromophore from the ground to the excited state. A photon absorption simulation was performed to investigate the movement of amino acid residues upon photoexcitation. To calculate the excited state of the chromophore, SCF-CI calculation was carried out with INDO/S Hamiltonian. We observed that some amino acid residues have strong interactions with the chromophore. Most of these amino acid residues are conserved in PYPs from three different species of bacteria. This observation indicates the biological importance of these residues. Proteins 32:268–275, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The N-terminally truncated variant of photoactive yellow protein (Delta25-PYP) undergoes a very similar photocycle as the corresponding wild-type protein (WT-PYP), although the lifetime of its light-illuminated (pB) state is much longer. This has allowed determination of the structure of both its dark- (pG) as well as its pB-state in solution by nuclear magnetic resonance (NMR) spectroscopy. The pG structure shows a well-defined fold, similar to WT-PYP and the X-ray structure of the pG state of Delta25-PYP. In the long-lived photocycle intermediate pB, the central beta sheet is still intact, as well as a small part of one alpha helix. The remainder of pB is unfolded and highly flexible, as evidenced by results from proton-deuterium exchange and NMR relaxation studies. Thus, the partially unfolded nature of the presumed signaling state of PYP in solution, as suggested previously, has now been structurally demonstrated.  相似文献   

20.
The spectroscopic properties of photoactive yellow protein (PYP) partially digested by chymotrypsin were studied. Chymotrypsin yielded three major products that were yellow but distinguishable by SDS-PAGE. They were readily separated by DEAE-Sepharose column chromatography. Protein sequencing and mass spectrometry demonstrated that chymotrypsin cleaved the N-terminal 6, 15, or 23 amino acids (T6, T15, and T23). The blue-shifts of the absorption maxima and the increases in the apparent pK(a) of the chromophores relative to those of intact PYP were less than 4 nm and 0.2, respectively. The absorption spectra of the near-UV intermediates produced from T6, T15, and T23 were identical to that of intact PYP, but with lifetimes that were 140, 2,300, and 4,500 times longer, respectively. These observations suggest that the recovery of the dark state of PYP from the near-UV intermediate is accelerated by the N-terminal region, and that this region acts as a regulatory factor for the photocycle of PYP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号