首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的HB-EGF过表达可促进心肌纤维化及心肌细胞凋亡,本文研究人参皂甙Rb1对cTnT^R141W转基因扩张型心肌病小鼠发病过程中的HB-EGF表达和心肌纤维化的影响。方法将cTnT^R141W转基因小鼠随机分为模型组和人参皂甙Rb1组(70 mg/kg/d),连续给药7个月,取野生型小鼠作为对照组。用Kaplan-Meier法进行生存分析。心脏超声检测心功能及心脏几何构型。计算心重指数。光镜观察心肌细胞及间质变化。Western blot检测心脏HB-EGF,pSTAT3表达水平。结果Rb1长期给药能显著改善该模型的心功能和心脏几何构型,将死亡率降低50%。Rb1治疗组心重指数降低11.3%(P〈0.05),光镜观察显示Rb1能减轻心肌细胞排列紊乱以及间质纤维化。Western blot结果显示Rb1能够显著降低模型中的HB-EGF及pSTAT3的表达。结论Rb1抑制心肌病发生中的HB-EGF表达及抑制下游信号pSTAT的激活,并改善扩张型心肌病模型的心功能及心脏重构。  相似文献   

2.
An acute treatment of mice with clenbuterol, a beta-adrenergic agonist, produced a marked increase of polyamines levels in heart, particularly during the early phase of administration of the drug. A single dose of 1.5 mg/kg caused as much as a 10 fold induction in activity of ornithine decarboxylase (ODC) and 3 to 4 fold increase in levels of putrescine, spermidine and spermine in mouse heart. Maximum changes were observed 3 to 4 hours post-administration of clenbuterol. This treatment did not produce any change in S-adenosylmethionine decarboxylase activity. The induction of cardiac ODC by clenbuterol was also dose dependent with a peak at about 5 micromol/kg. Co-administration of difluoromethylornithine, an irreversible inhibitor of ODC, or propranolol, a nonspecific beta-antagonist, with clenbuterol completely prevented the induction of ODC activity as well as the increase in polyamine levels in heart. However, pretreatment with alprenolol or metoprolol, the specific beta1 and beta2-antagonists, respectively, produced only partial prevention. The cardiac ODC from controls as well as clenbuterol treated mice exhibited similar affinity (Km) for its substrate, ornithine, while maximum enzyme activity (Vmax) was about 14 fold higher in clenbuterol treated mouse heart than in the control. Clenbuterol produced no change in the level of specific ODC mRNA or the protein, but the enzyme from the drug-treated mouse heart was considerably more stable than the control. Pretreatment of mice with either cycloheximide or actinomycin D followed by administration of clenbuterol could not prevent the induction in ODC activity suggesting that de novo biosynthesis of the enzyme protein or ODC mRNA was not responsible for induction of ODC activity. Post-translational changes in ODC may be responsible for an early increase of ODC activity due to clenbuterol treatment.  相似文献   

3.
目的利用cTnT^R141W转基因扩张型心肌病小鼠,研究人参皂甙Rb1对遗传性扩张型心肌病心功能及心脏重构的作用及其可能机制。方法将cTnT^R141W转基因小鼠随机分为模型组和人参皂甙Rb1治疗组(70 mg/kg/d),连续给药7个月,取野生型小鼠作为对照组。心脏超声检测心脏功能及几何构型。HE染色观察心肌细胞变化。透射电镜分析心肌超微结构。RT-PCR检测心肌粘附蛋白的表达。免疫荧光激光共聚焦观察心肌粘附分子Itga8的表达与分布。结果Rb1长期给药能显著改善该模型的心脏功能及几何构型。光镜和透射电镜观察显示Rb1能减轻心肌细胞排列紊乱及超微结构的破坏。RT-PCR结果显示,在模型中Cx40表达降低,E-cad、itga8和itgb1bp3表达升高,但在Rb1组中接近正常水平。免疫荧光激光共聚焦结果显示Rb1可降低Itga8的表达量并调节其分布。结论Rb1可改善扩张型心肌病模型的心功能,抑制心脏重构,其作用可能部分通过调节粘附蛋白的表达而实现的。  相似文献   

4.
In the forming vertebrate heart, bone morphogenetic protein signaling induces expression of the early cardiac regulatory gene nkx-2.5. A similar regulatory interaction has been defined in Drosophila embryos where Dpp signaling mediated by the Smad homologues Mad and Medea directly regulates early cardiac expression of tinman. A conserved cluster of Smad consensus binding sequences was identified in early cardiac regulatory sequences of the mouse nkx-2.5 gene. The importance of the nkx-2.5 Smad consensus region in early cardiac gene expression was examined in transgenic mice and in cultured mouse embryos. In transgenic mice, deletion of the Smad consensus region delays induction of embryonic DeltaSmadnkx-2.5/lacZ gene expression during early heart formation. Induction of DeltaSmadnkx-2.5/lacZ expression is also delayed in the outflow tract myocardium and visceral mesoderm. Targeted mutation of the three Smad consensus sequences inhibited nkx-2.5/lacZ expression in the cardiac crescent, demonstrating a specific requirement for the Smad consensus sites in early cardiac gene induction. Cultured DeltaSmadnkx-2.5/lacZ transgenic mouse embryos also exhibit delayed induction of transgene expression. In the four-chambered heart, deletion of the Smad consensus region resulted in expanded DeltaSmadnkx-2.5/lacZ transgene expression. Thus, the nkx-2.5 Smad consensus region can have positive or negative regulatory function, depending on the developmental context and cellular environment.  相似文献   

5.
Emx1 is a mouse homologue of the Drosophila homeobox gene empty spiracles. Its expression is limited to the neurons in developing and adult cerebral cortex and hippocampus. Because of the highly restricted expression pattern of the Emx1 gene, it would be quite desirable to characterize the promoter of the Emx1 for directing foreign gene expression in the transgenic mouse. We report here that we have achieved the Emx1-specific expression in transgenic mice by inserting the lacZ reporter and cre genes directly into the exon 1 of the Emx1 gene using embryonic stem (ES) cell technology. The distribution of the beta-galactosidase activity in the transgenic mice was consistent with the published results obtained using in situ hybridization and immunohistochemistry. Furthermore, we have demonstrated that Cre protein was present in the cerebral cortex of the transgenic mice and was able to mediate loxP-specific recombination in vitro. The creation of this line of cre transgenic mice, and the demonstration that the insertion site located in the exon 1 of the Emx1 gene could render foreign genes a specific expression pattern restricted to the developing and adult cerebral cortex and hippocampus, should be conducive to further studies of the effect of a gene mutation or overexpression upon the development and plasticity of cerebral cortex and hippocampus.  相似文献   

6.
7.
Immune cells within the granulomas of murine schistosomiasis mansoni make the neuropeptide substance P (SP) and express neurokine 1 receptor, which is the specific receptor for substance P (SPr). It was determined if mice with deletion of the SPr (SPr-/-) would develop a normal granulomatous response to schistosome ova during the course of natural infection. Mean liver granuloma size was smaller in SPr-/- mice compared with that of wild-type control animals. Although flow analysis revealed little difference in the cellular composition of the granulomas, both splenocytes and granuloma cells from SPr-/- mice produced much less IFN-gamma and IgG2a and less IgE. The expression of Th2 cytokines (IL-4/IL-5) and IgG1 was comparable to the wild-type control. The mouse with targeted disruption of its SPr had the nonmammalian gene encoding the enzyme beta-galactosidase inserted in exon 1 of the SPr gene. There was beta-galactosidase activity in many mononuclear cells scattered throughout the schistosome granulomas of SPr-/- mice. Also, a granuloma T cell line derived from this transgenic mouse produced beta-galactosidase. These results provide further evidence that in murine schistosomiasis SPr is displayed commonly on granuloma inflammatory cells and is important for granuloma development and expression of IFN-gamma circuitry in this natural infection.  相似文献   

8.
Regulation and expression of human CYP1A1 is demonstrated in transgenic mice. We have developed two transgenic mouse lines. One mouse strain (CYPLucR) carries a functional human CYP1A1 promoter (-1612 to +293)-luciferase reporter gene, and the other strain (CYP1A1N) expresses CYP1A1 under control of the full-length human CYP1A1 gene and 9 kb of flanking regulatory DNA. With CYPLucR(+/-) mice, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) and several other aryl hydrocarbon receptor ligands induced hepatocyte-specific luciferase activity. When other tissues were examined, TCDD induced luciferase activity in brain with limited induction in lung and no detectable luciferase activity in kidney. Treatment of CYP1A1N(+/-) mice with TCDD resulted in induction of human CYP1A1 in liver and lung, while mouse Cyp1a1 was induced in liver, lung, and kidney. Although induced CYP1A1/Cyp1a1 could not be detected by Western blot analysis in brains from CYP1A1N(+/-) mice, induction in brain was verified by detection of CYP1A1/Cyp1a1 RNA. The administration of TCDD to nursing mothers to examine the effect of lactational exposure via milk demonstrated prominent induction of luciferase activity in livers of CYPLucR(+/-) newborn pups with limited induction in brain. However, TCDD treatment of adult CYPLucR(+/-) mice led to a 7-10-fold induction of brain luciferase activity. Combined these results indicate that tissue-specific and developmental factors are controlling aryl hydrocarbon receptor-mediated induction of human CYP1A1.  相似文献   

9.
Congestive heart failure is associated with a loss of circadian and short-term variability in blood pressure and heart rate. In order to assess the contribution of elevated cardiac sympathetic activity to the disturbed cardiovascular regulation, we monitored blood pressure and heart rate in mice with cardiac overexpression of the β1-adrenoceptor prior to the development of overt heart failure. Telemetry transmitters for continuous monitoring of blood pressure and heart rate were implanted in 8 to 9-week-old wildtype and transgenic mice, derived from crosses of heterozygous transgenic (line β1TG4) and wildtype mice. Cardiovascular circadian patterns were analyzed under baseline conditions and during treatment with propranolol (500 mg/L in drinking water). Short-term variability was assessed by spectral analysis of beat-to-beat data sampled for 30 min at four circadian times. Transgenic β1TG4 mice showed an increase in 24 h heart rate, while blood pressure was not different from wildtype controls. Circadian patterns in blood pressure and heart were preserved in β1TG4 mice. Addition of propranolol to the animals' drinking water led to a reduction in heart rate and its 24 h variation in both strains of mice. Short-term variability in blood pressure was not different between wildtype and β1TG4 mice, but heart rate variability in the transgenic animals showed a rightward shift of the high-frequency component in the nocturnal activity period, suggesting an increase in respiratory frequency. In conclusion, the present study shows that both the circadian and the short-term regulation of blood pressure and heart rate are largely preserved in young, nonfailing β1-transgenic mice. This finding suggests that the loss of blood pressure and heart rate variability observed in human congestive heart failure cannot be attributed solely to sympathetic overactivity but reflects the loss of adrenergic responsiveness to changes in the activity of the autonomic nervous system.  相似文献   

10.
Serotonin (5-HT) controls a wide range of biological functions. In the brain, its implication as a neurotransmitter and in the control of behavioral traits has been largely documented. At the periphery, its modulatory role in physiological processes, such as the cardiovascular function, is still poorly understood. The rate limiting enzyme of 5-HT synthesis, tryptophan hydroxylase (TPH), is encoded by two genes: the well characterized TPH1 gene and a recently identified TPH2 gene. Based on the study of a mutant mouse in which the TPH1 gene has been inactivated by replacement of the beta-galactosidase gene, we established that the neuronal TPH2 is expressed in neurons of the raphe nuclei and of the myenteric plexus, whereas the non-neuronal TPH1, as detected by beta-galactosidase expression, is expressed in the pineal gland and the enterochromaffin cells. Anatomic examination of the mutant mice revealed larger heart sizes as compared to wild-type. Histologic investigations indicated that the primary structure of the heart muscle is not affected. Hemodynamic analyses in mutant animals demonstrated abnormal cardiac activity which ultimately leads to heart failure. This is the first report linking loss of TPH1 gene expression, and thus of peripheral 5-HT, to a cardiac dysfunction phenotype. The TPH1 -/- mutant may be a valuable model for investigating cardiovascular dysfunction such as those observed in human heart failure.  相似文献   

11.
Murine myocardium contains diminutive amounts of calcium-independent phospholipase A2 (iPLA2) activity (<5% that of human heart), and malignant ventricular tachyarrhythmias are infrequent during acute murine myocardial ischemia. Accordingly we considered the possibility that the mouse was a species-specific knockdown of the human pathologic phenotype of ischemiainduced lethal ventricular tachyarrhythmias. Transgenic mice were generated expressing amounts of iPLA2beta activity comparable to that present in human myocardium. Coronary artery occlusion in Langendorff perfused hearts from transgenic mice resulted in a 22-fold increase in fatty acids released into the venous eluent (29.4 nmol/ml in transgenic versus 1.35 nmol/ml of eluent in wild-type mice), a 4-fold increase in lysophosphatidylcholine mass in ischemic zones (4.9 nmol/mg in transgenic versus 1.1 nmol/mg of protein in wild-type mice), and malignant ventricular tachyarrhythmias within minutes of ischemia. Neither normally perfused transgenic nor ischemic wild-type hearts demonstrated these alterations. Pretreatment of Langendorff perfused transgenic hearts with the iPLA2 mechanism-based inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) just minutes prior to induction of ischemia completely ablated fatty acid release and lysolipid accumulation and rescued transgenic hearts from malignant ventricular tachyarrhythmias. Collectively these results demonstrate that ischemia activates iPLA2beta in intact myocardium and that iPLA2beta-mediated hydrolysis of membrane phospholipids can induce lethal malignant ventricular tachyarrhythmias during acute cardiac ischemia.  相似文献   

12.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

13.
The possible role of calcineurin in cardiac hypertrophy induced by calmodulin (CaM) overexpression in the heart was investigated. CaM transgenic (CaM-TG) mice developed marked cardiac hypertrophy and exhibited up-regulation of atrial natriuretic factor (ANF) and beta-myosin heavy chain gene expression in the heart during the first 2 weeks after birth. The activity of calcineurin in the heart was also significantly increased in CaM-TG mice compared with wild-type littermates. Treatment of CaM-TG mice with the calcineurin inhibitor FK506 (1mg/kg per day) prevented the increase in the heart-to-body weight ratio as well as that in cardiomyocyte width. FK506 also inhibited the induction of fetal-type cardiac gene expression in CaM-TG mice. Overexpression of CaM in cultured rat cardiomyocytes activated the ANF gene promoter in a manner sensitive to FK506. Activation of a calcineurin-dependent pathway thus contributes to the development of cardiac hypertrophy induced by CaM overexpression in the heart.  相似文献   

14.
目的建立心脏特异表达小鼠24-脱氢胆固醇还原酶基因(Dhcr24)转基因小鼠,研究该基因在心脏中表达对小鼠心脏发育,形态和功能维持中的作用。方法RT-PCR法克隆小鼠24-脱氢胆固醇还原酶基因,把Dhcr24基因插入-αMHC启动子下游,构建转基因表达载体,通过显微注射法建立Dhcr24 C57BL/6J转基因小鼠。并利用特异引物PCR法鉴定转基因小鼠的基因型,RT-PCR和Western Blotting检测基因表达水平,光学显微镜和超声检测不同月龄Dhcr24转基因小鼠心脏的组织结构改变。结果建立了2个品系的心脏特异表达Dhcr24转基因小鼠。转入的Dhcr24基因在心脏组织的表达水平超过内源性Dhcr24的3倍。心脏组织学和超声检查证实:Dhcr24转基因小鼠的心室壁变厚,心腔变小,但心脏功能保持正常。结论成功建立了心脏特异表达Dhcr24转基因小鼠,Dhcr24基因在心脏组织的过度表达对小鼠心脏发育和功能维持中的作用需要进一步探讨。  相似文献   

15.
Congestive heart failure is associated with a loss of circadian and short-term variability in blood pressure and heart rate. In order to assess the contribution of elevated cardiac sympathetic activity to the disturbed cardiovascular regulation, we monitored blood pressure and heart rate in mice with cardiac overexpression of the β1-adrenoceptor prior to the development of overt heart failure. Telemetry transmitters for continuous monitoring of blood pressure and heart rate were implanted in 8 to 9-week-old wildtype and transgenic mice, derived from crosses of heterozygous transgenic (line β1TG4) and wildtype mice. Cardiovascular circadian patterns were analyzed under baseline conditions and during treatment with propranolol (500 mg/L in drinking water). Short-term variability was assessed by spectral analysis of beat-to-beat data sampled for 30 min at four circadian times. Transgenic β1TG4 mice showed an increase in 24 h heart rate, while blood pressure was not different from wildtype controls. Circadian patterns in blood pressure and heart were preserved in β1TG4 mice. Addition of propranolol to the animals’ drinking water led to a reduction in heart rate and its 24 h variation in both strains of mice. Short-term variability in blood pressure was not different between wildtype and β1TG4 mice, but heart rate variability in the transgenic animals showed a rightward shift of the high-frequency component in the nocturnal activity period, suggesting an increase in respiratory frequency. In conclusion, the present study shows that both the circadian and the short-term regulation of blood pressure and heart rate are largely preserved in young, nonfailing β1-transgenic mice. This finding suggests that the loss of blood pressure and heart rate variability observed in human congestive heart failure cannot be attributed solely to sympathetic overactivity but reflects the loss of adrenergic responsiveness to changes in the activity of the autonomic nervous system.  相似文献   

16.
Cre-mediated somatic site-specific recombination in mice.   总被引:11,自引:2,他引:11       下载免费PDF全文
Conditional mutant mice equipped with heterologous recombination systems (Cre/lox or Flp/frt) are promising for studying tissue-specific gene function and for designing better models of human diseases. The utility of these mice depends on the cell target specificity, on the efficiency and on the control over timing of gene (in)activation. We have explored the utility of adenoviral vectors and transgenic mice expressing Cre under the control of tissue-specific promoters to achieve Cre/lox-mediated somatic recombination of the LacZ reporter gene, using a newly generated flox LacZ mouse strain. When adeno Cre viruses were administered via different routes, recombination and expression of LacZ was detected in a wide range of tissues. Whereas in liverbeta-galactosidase activity was quickly lost by turnover of expressing cells, even though the recombined allele was retained,beta-galactosidase in other tissues persisted for many months. Our data indicate that the flox LacZ transgenic line can be utilized effectively to monitor the level and functionality of Cre protein produced upon infection with adeno Cre virus or upon crossbreeding with different Cre transgenic lines.  相似文献   

17.
A composite cytomegalovirus-immediate early gene enhancer/chicken β-actin promoter (CAG) was utilized to generate transgenic mice that overexpress human spermidine synthase (SpdS) to determine the impact of elevated spermidine synthase activity on murine development and physiology. CAG-SpdS mice were viable and fertile and tissue SpdS activity was increased up to ninefold. This increased SpdS activity did not result in a dramatic elevation of spermidine or spermine levels but did lead to a 1.5- to 2-fold reduction in tissue spermine:spermidine ratio in heart, muscle and liver tissues with the highest levels of SpdS activity. This new mouse model enabled simultaneous overexpression of SpdS and other polyamine biosynthetic enzymes by combining transgenic animals. The combined overexpression of both SpdS and spermine synthase (SpmS) in CAG-SpdS/CAG-SpmS bitransgenic mice did not impair viability or lead to overt developmental abnormalities but instead normalized the elevated tissue spermine:spermidine ratios of CAG-SpmS mice. The CAG-SpdS mice were bred to MHC-AdoMetDC mice with a >100-fold increase in cardiac S-adenosylmethionine decarboxylase (AdoMetDC) activity to determine if elevated dcAdoMet would facilitate greater spermidine accumulation in mice with SpdS overexpression. CAG-SpdS/MHC-AdoMetDC bitransgenic animals were produced at the expected frequency and exhibited cardiac polyamine levels comparable to MHC-AdoMetDC littermates. Taken together these results indicate that SpdS levels are not rate limiting in vivo for polyamine biosynthesis and are unlikely to exert significant regulatory effects on cellular polyamine content and function.  相似文献   

18.
CCK is predominantly expressed in subsets of endocrine cells in the intestine and neurons in the brain. We evaluated the expression of a CCK gene construct in transgenic mice and cultured cells to identify a genomic region that directs correct tissue- and cell-specific expression in enteroendocrine cells. The CCKL1 transgene contained 6.4 kb of mouse Cck fused to lacZ. Expression was evaluated in three transgenic lines (J11, J12, J14) by measurement of beta-galactosidase in tissue homogenates and frozen sections. Correct tissue-specific expression was observed, with beta-galactosidase activity detected in intestine and brain. However, there were differences seen in cell-specific expression in the intestine. Line J14 exhibited expression in CCK-endocrine cells, with expressing cells arising at the normal time during fetal development. However, transgene expression in line J12 intestine was limited to neurons of the enteric nervous system, which reflect an early fetal expression pattern for CCK. Analysis of an additional 15 transgenic founder mice demonstrated intestinal expression in 40% of transgenics, with expressing mice following either an endocrine cell pattern or a neuronal pattern in approximately equal numbers. CCKL1 transfection analysis in cultured cells also demonstrated enteroendocrine cell expression, with 100-fold enhanced activity in the enteroendocrine cell line STC-1 compared with nonendocrine cell lines. The results suggest that the minimal cis-regulatory DNA elements necessary for appropriate CCK expression in enteroendocrine cells reside within the 6.4-kb mouse genomic fragment.  相似文献   

19.
本研究拟建立心脏特异性表达hAPE1转基因小鼠,为研究hAPE1基因功能及其突变与心脏发育和心血管疾病的关系提供工具动物。将人APE1(human APE1,hAPE1)基因插入到心脏特异性启动子α-肌球蛋白重链(α-MHC)下游,构建了心肌细胞特异性表达hAPE1的转基因表达载体,显微注射法导入C57BL/6J小鼠受精卵中,经胚胎移植获得转基因首建者小鼠,建立hAPE1转基因小鼠,PCR鉴定转基因小鼠基因型,Western blotting鉴定h APE1蛋白在心脏中的表达并筛选高表达的转基因品系。研究表明,将含有心肌细胞特异性α-MHC启动子和hAPE1基因的转基因载体进行显微注射于小鼠胚胎中,接着将胚胎移植入假孕母鼠的输卵管中发育,建立了心脏组织特异性高表达hAPE1转基因小鼠品系,获得子代小鼠40只。PCR检测发现有15只小鼠在其基因组上整合有hAPE1基因,Western blotting检测hAPE1在这些小鼠心脏中高度特异性表达。本研究成功获得了在小鼠心肌细胞中特异性表达hAPE1的转基因小鼠,为研究基因在心脏发育与相关疾病中的功能提供了有利的工具。  相似文献   

20.
The dopamine transporter is an essential component of the dopaminergic synapse. It is located in the presynaptic neurons and regulates extracellular dopamine levels. We generated a transgenic mouse line expressing the Cre recombinase under the control of the regulatory elements of the dopamine transporter gene, for investigations of gene function in dopaminergic neurons. The codon-improved Cre recombinase (iCre) gene was inserted into the dopamine transporter gene on a bacterial artificial chromosome. The pattern of expression of the bacterial artificial chromosome-dopamine transporter-iCre transgene was similar to that of the endogenous dopamine transporter gene, as shown by immunohistochemistry. Recombinase activity was further studied in mice carrying both the bacterial artificial chromosome-dopamine transporter-iCre transgene and a construct expressing the beta-galactosidase gene after Cre-mediated recombination. In situ studies showed that beta-galactosidase (5-bromo-4-chloroindol-3-yl beta-D-galactoside staining) and the dopamine transporter (immunofluorescence) had identical distributions in the ventral midbrain. We used this animal model to study the distribution of dopamine transporter gene expression in hypothalamic nuclei in detail. The expression profile of tyrosine hydroxylase (an enzyme required for dopamine synthesis) was broader than that of beta-galactosidase in A12 to A15. Thus, only a fraction of neurons synthesizing dopamine expressed the dopamine transporter gene. The bacterial artificial chromosome-dopamine transporter-iCre transgenic line is a unique tool for targeting Cre/loxP-mediated DNA recombination to dopamine neurons for studies of gene function or for labeling living cells, following the crossing of these mice with transgenic Cre reporter lines producing fluorescent proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号