首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the diversity structure of avian assemblages in North America   总被引:2,自引:0,他引:2  
Aim To determine the major patterns of change in avian diversity structure over space and time at a local resolution and continental extent in non‐urban areas in North America. Location The contiguous United States and southern Canada. Methods We used 1673 North American Breeding Bird Survey (BBS) routes containing 547 terrestrial and aquatic species to estimate four diversity components: species richness, individual abundance, taxonomic distinctness and species evenness. We implemented three levels of analysis to examine changes in diversity structure on a yearly basis from 1968 to 2003: (1) a canonical analysis of discriminance, (2) a univariate analysis across BBS routes, and (3) a univariate analysis at individual BBS routes. We estimated changes in similarity in species composition over time between 470,730 BBS route pairs. We also estimated the level of human activity at BBS routes using three spatial anthropogenic databases. Results BBS routes were located in non‐urban areas in association with low nighttime light activity and moderately low human population densities. The analysis of diversity structure indicated the presence of two independent patterns: (1) a temporally consistent pattern defined by increasing species richness (12% increase from 1968 to 2003) associated with limited gains in taxonomic distinctness, and (2) an association between species abundance and evenness related to variability in abundance associated with the most abundant species. The similarity analysis indicated that BBS routes located closer to the Atlantic and the Pacific coasts of the United States experienced the strongest patterns of homogenization of species composition. Main conclusions Our results suggest that avian diversity structure has changed at the local scale in non‐urban areas in North America. However, there was no evidence for a consistent continent‐wide pattern. Instead, the evidence pointed to the presence of regional factors influencing diversity patterns. This study provides a foundation for more detailed investigations of the spatiotemporal and taxonomic details of these general patterns.  相似文献   

2.
Aim The assumption that ecological patterns at large spatial scales originate exclusively from non‐anthropogenic processes is growing more questionable with the increasing domination of the biosphere by humans. Because common and rare species are known to respond differently to anthropogenic activities at local scales these differential responses could, over time, be reflected in distributional patterns of species richness at larger spatial scales. This work tests the hypothesis that modern processes have played a role in shaping these patterns, by examining recent changes in the structure and composition of assemblages of breeding avifauna over a large geographical extent. Location The portion of North America containing the contiguous United States and southern Canada. Methods Changes in the geographical range structure of breeding avifauna in North America from 1968 to 2003 were analysed in regions containing historically moderate levels of anthropogenic activities. Two geographical measures, extent of occurrence and area of occupancy, were used to identify the level of rarity or commonality of individual species and to estimate, based on a vector analysis, patterns of change in geographical range structure for individual species and avian assemblages. Results More species experienced patterns of geographical range expansion (51%) than contraction (28%). The majority of avian assemblages (43%) displayed patterns of geographical range expansion: common species increased in number and proportion (6%) in association with reciprocal losses in rare and moderately rare species, resulting in a constant level of species richness. The minority of avian assemblages (21%) displayed patterns of geographical range contraction: gains occurred for common species as well as for rare and moderately rare species, resulting in substantial increases in species richness and a decline in the proportion of common species (4%). The remaining avian assemblages presented equivocal patterns characterized by gains in the number and proportion (2%) of common species and gains in species richness. Main conclusions Modern processes have played a role in shaping the distribution patterns of species richness at large spatial scales based on the composition of common and rare species. This suggests that anthropogenic activities cannot be ignored as a possible causal factor when considering ecological patterns at large spatial scales.  相似文献   

3.
Aim Changes in community attributes due to the influence of anthropogenic activities have been examined primarily using occurrence data with little consideration of associated changes in abundance. To determine how this influences our perception of biotic homogenization, we examined compositional patterns for avian assemblages over space and time along an occurrence–abundance continuum. Location The contiguous United States and southern Canada. Methods We examined avian assemblages at 951 Breeding Bird Survey (BBS) routes from 1970 to 2005 that contained a total of 443 species. We used five dissimilarity indices to estimate compositional patterns along an occurrence–abundance continuum of assemblage structure (from species occurrence to transformed abundance to raw abundance) for 396,925 unique combinations of BBS route pairs. We examined annual plots of dissimilarity by distance between BBS routes pairs to estimate spatial and temporal patterns for each index. Results Dissimilarity declined with increasing distance between route pairs for occurrence and transformed abundance, reaching an asymptote at approximately 2500 km. For raw abundance, dissimilarity peaked at intermediate distances (1000–2500 km) with no evidence of an asymptote. Avian assemblages became more similar over time at all points along the continuum. Occurrence and transformed abundance presented the weakest temporal trends, which were uniform or poorly delineated as a function of distance between routes. Raw abundance presented the strongest temporal trends, which declined in strength with increasing distance between routes. Main conclusions With the addition of abundance, there was a substantial and consistent pattern of degradation of β‐diversity for North American avifauna that differed considerably from that observed from occurrence data alone. The geographical expansion of a few species, which recently benefited from the direct and indirect consequences of anthropogenic activities, probably played a prominent role in these patterns. When broad‐scale expansions in occupancy are evident, minor gains in similarity based on species occurrence can mask more substantial gains in similarity based on local abundance. When abundance information is unavailable, its role can be estimated by how occupancy has responded geographically to anthropogenic activities and the expectations of the abundance–occupancy relationship. Our findings support previous work indicating that widespread and locally abundant species will tend to benefit more from anthropogenic activities, creating a possible synergism that enhances biotic homogenization.  相似文献   

4.
Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.  相似文献   

5.
Aim Using a global data base of the distribution of extant bird species, we examine the evidence for spatial variation in the evolutionary origins of contemporary avian diversity. In particular, we assess the possible role of the timing of mountain uplift in promoting diversification in different regions. Location Global. Methods We mapped the distribution of avian richness at four taxonomic levels on an equal‐area 1° grid. We examined the relationships between richness at successive taxonomic levels (e.g. species richness vs. genus richness). We mapped the residuals from linear regressions of these relationships to identify areas that are exceptional in the number of lower taxa relative to the number of higher taxa. We use generalized least squares models to test the influence of elevation range and temperature on lower‐taxon richness relative to higher‐taxon richness. Results Peaks of species richness in the Neotropics were congruent with patterns of generic richness, whilst peaks in Australia and the Himalayas were congruent with patterns of both genus and family richness. Hotspots in the Afrotropics did not reflect higher‐taxon patterns. Regional differences in the relationship between richness at successive taxonomic levels revealed variation in patterns of taxon co‐occurrence. Species and genus co‐occurrence was positively associated with elevational range across much of the world. Taxon occurrence in the Neotropics was associated with a positive interaction between elevational range and temperature. Conclusions These results demonstrate that contemporary patterns of richness show different associations with higher‐taxon richness in different regions, which implies that the timing of historical effects on these contemporary patterns varies across regions. We suggest that this is due to dispersal limitation and phylogenetic constraints on physiological tolerance limits promoting diversification. We speculate that diversification rates respond to long‐term changes in the Earth's topography, and that the role of tropical mountain ranges is implicated as a correlate of contemporary diversity, and a source of diversification across avian evolutionary history.  相似文献   

6.
7.
Ecological, historical, and evolutionary hypotheses are important to explain geographical diversity gradients in many clades, but few studies have combined them into a single analysis allowing a comparison of their relative importance. This study aimed to evaluate the relative importance of ecological, historical, and evolutionary hypotheses in explaining the current global distribution of non‐marine turtles, a group whose distribution patterns are still poorly explored. We used data from distribution range maps of 336 species of non‐marine turtles, environmental layers, and phylogeny to obtain richness estimates of these animals in 2° × 2° cells and predictors related to ecological, evolutionary and historical hypotheses driving richness patterns. Then we used a path analysis to evaluate direct and indirect effects of the predictors on turtle richness. Ancestral area reconstruction was also performed in order to evaluate the influence of time‐for‐speciation in the current diversity of the group. We found that environmental variables had the highest direct effects on non‐marine turtle richness, whereas diversification rates and area available in the last 55 million yr minimally influenced turtle distributions. We found evidence for the time‐for‐speciation effect, since regions colonized early were generally richer than recently colonized regions. In addition, regions with a high number of colonization events had a higher number of turtle species. Our results suggested that ecological processes may influence non‐marine turtle richness independent of diversification rates, but they are probably related to dispersal abilities. However, colonization time was also an important component that must be taken into account. Finally, our study provided additional support for the importance of ecological (climate and productivity) and historical (time‐for‐speciation and dispersal) processes in shaping current biodiversity patterns.  相似文献   

8.
Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182–194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life‐history traits such as spawning mound construction, associations with mound‐building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound‐building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound‐building fishes serve as keystone species for colonization of headwater streams.  相似文献   

9.
A decline in species richness moving from equatorial regions to polar regions is a common, but not universal, macroecological pattern. Many studies have focused on this pattern, but few have focused on how the vital rates responsible for species richness patterns, local rates of species extinction and turnover, vary with latitude. We examine patterns of richness, turnover and extinction in North American avian communities inhabiting three ecoregions, using methods that account for failure to detect all species present. We use breeding bird point count data from > 1000 routes in the Breeding Bird Survey collected from 1982 to 2001 to estimate richness, extinction probability and turnover rates. Our analyses differ from others in 1) the use of annual estimates derived at specific locations rather than index data accumulated over numbers of years, 2) the use of estimators that incorporated detection probabilities and 3) a focus on dynamical processes (colonization, extinction) in addition to static patterns (species richness). We find average species richness estimates (48 to 135 species) increasing with latitude for all three regions, contradicting predictions based on the latitudinal diversity gradient. The estimated rates of extinction and turnover declined with latitude across the three ecoregions. We speculate that higher richness might be linked to periods of superabundant food supply in northern areas that support greater numbers of resident and migrant species. Our primary ecological conclusions are that the latitudinal gradient in species richness is reversed for North American birds in the studied ecoregions, and that both local extinction and turnover decrease from southern to northern latitudes. Thus, the vital rates that determine richness show evidence of greater stability and reduced dynamics in northern areas of higher richness. We recommend additional studies examining patterns of colonization, extinction and turnover in communities, that use clearly defined estimators that deal with detection probability.  相似文献   

10.
Invasion of North American drainages by alien fish species   总被引:8,自引:0,他引:8  
1. Data from the literature were used to document colonization patterns by introduced freshwater fishes in 125 drainages across temperate North America. We analysed this data set to quantify susceptibility to invasion, success of the invaders and changes in species richness.
2. Drainages with a high number of impoundments, large basin area and low native species diversity had the greatest number of introduced species. Those drainages containing few native fishes exhibited great variation in the number of invaders, while waters with a rich native fauna contained few introduced species. However, this pattern did not differ significantly from random simulations because the pool of potential invaders is greater for drainages with low species richness.
3. In most drainages, there were more introduced than imperilled or extirpated species, suggesting that invaders tend to increase overall species richness.
4. These patterns suggest that North American fish communities are not saturated with species, but instead, are capable of supporting higher levels of diversity if the pool of potential colonists and the rate of colonization from that pool is increased.  相似文献   

11.
Aim The aim of this study was to describe the composition, community structure and biogeographical variation of subtidal algal assemblages dominated by the brown alga Cystoseira crinita across the Mediterranean Sea. Location The Mediterranean coast, from Spain (1°25′ E) to Turkey (30°26′ E). Methods Data on the species composition and structure of assemblages dominated by the species C. crinita were collected from 101 sites in nine regions across the Mediterranean Sea. Multivariate and univariate statistical tools were used to investigate patterns of variation in the composition of the assemblages among sites and regions, and to compare these with previously defined biogeographical regions. Linear regressions of species richness versus longitude and versus latitude were also carried out to test previously formulated hypotheses of biodiversity gradients in the Mediterranean Sea. Results The main features characterizing C. crinita‐dominated assemblages across the Mediterranean included a similar total cover of species, a similar cover of C. crinita, and consistency in the presence of the epiphyte Haliptilon virgatum. Biogeographical variation was detected as shifts in relative abundances of species among regions, partly coinciding with previously described biogeographical sectors. A significant positive correlation was found between species richness and latitude, while no significant correlation was detected between species richness and longitude. Main conclusions The patterns of variation in community structure detected among the studied regions reflected their geographical positions quite well. However, latitude seemed to contribute more to the explanation of biological patterns of diversity than did geographical distances or boundaries, which classically have been used to delimit biogeographical sectors. Moreover, the positive correlation between species richness and latitude reinforced the idea that latitude, and possibly temperature as a related environmental factor, plays a primary role in structuring biogeographical patterns in the Mediterranean Sea. The lack of correlation between species richness and longitude contradicts the notion that there is a decrease in species richness from west to east in the Mediterranean, following the direction of species colonization from the Atlantic.  相似文献   

12.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

13.
Aim To determine whether patterns of avian species turnover reflect either biome or climate transitions at a regional scale, and whether anthropogenic landscape transformation affects those patterns. Location South Africa and Lesotho. Methods Biome and land transformation data were used to identify sets of transition areas, and avian species occurrence data were used to measure species turnover rates (β‐diversity). Spatial congruence between areas of biome transition, areas of high vegetation heterogeneity, high climatic heterogeneity, and high β‐diversity was assessed using random draw techniques. Spatial overlap in anthropogenically transformed areas, areas of high climatic heterogeneity and high β‐diversity areas was also assessed. Results Biome transition areas had greater vegetation heterogeneity, climatic heterogeneity, and β‐diversity than expected by chance. For the land transformation transition areas, this was only true for land transformation heterogeneity values and for one of the β‐diversity measures. Avian presence/absence data clearly separated the biome types but not the land transformation types. Main conclusions Biome edges have elevated climatic and vegetation heterogeneity. More importantly, elevated β‐diversity in the avifauna is clearly reflected in the heterogeneous biome transition areas. Thus, there is spatial congruence in biome transition areas (identified on vegetation and climatic grounds) and avian turnover patterns. However, there is no congruence between avian turnover and land transformation transition areas. This suggests that biogeographical patterns can be recovered using modern data despite landscape transformation.  相似文献   

14.
Aim Based on a priori hypotheses, we developed predictions about how avian communities might differ at the edges vs. interiors of ecoregions. Specifically, we predicted lower species richness and greater local turnover and extinction probabilities for regional edges. We tested these predictions using North American Breeding Bird Survey (BBS) data across nine ecoregions over a 20‐year time period. Location Data from 2238 BBS routes within nine ecoregions of the United States were used. Methods The estimation methods used accounted for species detection probabilities < 1. Parameter estimates for species richness, local turnover and extinction probabilities were obtained using the program COMDYN. We examined the difference in community‐level parameters estimated from within exterior edges (the habitat interface between ecoregions), interior edges (the habitat interface between two bird conservation regions within the same ecoregion) and interior (habitat excluding interfaces). General linear models were constructed to examine sources of variation in community parameters for five ecoregions (containing all three habitat types) and all nine ecoregions (containing two habitat types). Results Analyses provided evidence that interior habitats and interior edges had on average higher bird species richness than exterior edges, providing some evidence of reduced species richness near habitat edges. Lower average extinction probabilities and turnover rates in interior habitats (five‐region analysis) provided some support for our predictions about these quantities. However, analyses directed at all three response variables, i.e. species richness, local turnover, and local extinction probability, provided evidence of an interaction between habitat and region, indicating that the relationships did not hold in all regions. Main conclusions The overall predictions of lower species richness, higher local turnover and extinction probabilities in regional edge habitats, as opposed to interior habitats, were generally supported. However, these predicted tendencies did not hold in all regions.  相似文献   

15.
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates.  相似文献   

16.
Summary Information on the impacts of outdoor recreation on wildlife within national parks and reserves can be useful to natural area managers. This study aimed to (i) investigate the density, diversity and species composition of avian communities in recreation areas in bushland settings in comparison to surrounding natural habitats, and (ii) determine the influence of the presence of people on avian assemblages in such recreation areas. Avian density, species richness and community composition were compared between six high‐visitation bushland camping and picnic areas (recreation areas) and surrounding undisturbed habitats to examine the effect of recreation areas on avian assemblages. While total numbers of birds detected was found to be higher in recreation areas, species richness trends indicated that a greater diversity of birds was associated with the surrounding natural habitats, which were found to support a taxonomically different avian assemblage to the recreation areas. Interestingly, species previously shown to distinguish urban avian communities were commonly present and often more abundant in the recreation areas than the surrounding natural habitats. We investigated the effect of the intermittent presence of people (rather than clearing alone) and addressed changes in the diurnal distribution of species, by comparing avian assemblages at 22 picnic areas in the morning, at midday and in the afternoon between days of high and low human visitation. Observations of the availability of anthropogenic food resources and subsequent utilization by avifauna were recorded. Generally, avian assemblages appeared to be independent of the presence of people, although the provision of anthropogenic foods is thought to have the potential to adversely affect individual birds. The findings of this study suggest that even small‐scale habitat clearance to create picnic areas adversely affects the avian assemblage present, with temporal changes in visitation levels of humans in these areas appearing to have had no additional influence unless through indirect impacts from anthropogenic foods.  相似文献   

17.
Two major events were invoked to understand recent biodiversity patterns in Mediterranean floras: northern hemisphere glaciations and historical human impacts. These two events were considered in this work, where we investigated general patterns in plant species richness and rarity attributes in two different Mediterranean regions: California and Iberia. Our goal was to assess whether comparisons of this sort provided evidence of different extinctions rates, making an effort to decouple anthropogenic from ice age‐related effects in both regions. We employed a taxonomically revised database for eight Mediterranean floras containing information on species richness for 298 families and rarity attributes for 11,834 taxa. We used summary statistics (Gini coefficient) and randomly generated models to test for general patterns of the distribution of diversity within and among taxonomic groups. We then used this general pattern among Mediterranean floras to provide a context in which to evaluate our two focal areas. Results indicated that floras of California and Iberia share the closest taxonomic structure among Mediterranean regions. Differences emerged in rarity attributes and the taxonomic identities of rarity rich groups. These findings were interpreted in the light of Pleistocene changes. In addition, a closer focus on rarity attributes allowed us to pinpoint some segments of these floras where anthropogenic activities may drive variation from general patterns, specifically for rare species in ecologically sensitive habitats.  相似文献   

18.
Aim Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location Global; equal‐area grid cells of approximately 10,000 km2. Methods We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index and the total taxonomic distinctness (TTD) index, because we found that the variance of the other two indices we examined (average taxonomic distinctness and mean root distance) strongly depended on species richness. We then identified regions with unusually high or low phylogenetic diversity given the underlying level of species richness by using the residuals from the global relationship of species richness and phylogenetic diversity. Results Phylogenetic diversity as measured by either Faith’s PD or TTD was strongly correlated with species richness globally, while the other two indices showed very different patterns. When either Faith’s PD or TTD was tested against species richness, residuals were strongly spatially structured. Areas with unusually low phylogenetic diversity for their associated species richness were mostly on islands, indicating large radiations of few lineages that have successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages. Main conclusions We show spatial structure in the residuals of the relationship between species richness and phylogenetic diversity, which together with the positive relationship itself indicates strong signatures of evolutionary history on contemporary global patterns of amphibian species richness. Areas with unusually low and high phylogenetic diversity for their associated richness demonstrate the importance of biogeographic barriers to dispersal, colonization and diversification processes.  相似文献   

19.
Aim To examine patterns of avian frugivory across clades, geography and environments. Location Global, including all six major biogeographical realms (Afrotropics, Australasia, Indo‐Malaya, Nearctic, Neotropics and Palaearctic). Methods First, we examine the taxonomic distribution of avian frugivory within orders and families. Second we evaluate, with traditional and spatial regression approaches, the geographical patterns of frugivore species richness and proportion. Third, we test the potential of contemporary climate (water–energy, productivity, seasonality), habitat heterogeneity (topography, habitat diversity) and biogeographical history (captured by realm membership) to explain geographical patterns of avian frugivory. Results Most frugivorous birds (50%) are found within the perching birds (Passeriformes), but the woodpeckers and allies (Piciformes), parrots (Psittaciformes) and pigeons (Columbiformes) also contain a significant number of frugivorous species (9–15%). Frugivore richness is highest in the Neotropics, but peaks in overall bird diversity in the Himalayan foothills, the East African mountains and in some areas of Brazil and Bolivia are not reflected by frugivores. Current climate explains more variance in species richness and proportion of frugivores than of non‐frugivores whereas it is the opposite for habitat heterogeneity. Actual evapotranspiration (AET) emerges as the best single climatic predictor variable of avian frugivory. Significant differences in frugivore richness and proportion between select biogeographical regions remain after differences in environment (i.e. AET) are accounted for. Main conclusions We present evidence that both environmental and historical constraints influence global patterns of avian frugivory. Whereas water–energy dynamics possibly constrain frugivore distribution via indirect effects on food plants, regional differences in avian frugivory most likely reflect historical contingencies related to the evolutionary history of fleshy fruited plant taxa, niche conservatism and past climate change. Overall our results support an important role of co‐diversification and environmental constraints on regional assembly over macroevolutionary time‐scales.  相似文献   

20.
Invasion impacts local species turnover in a successional system   总被引:3,自引:0,他引:3  
Exotic plant invasions are often associated with declines in diversity within invaded communities. However, few studies have examined the local community dynamics underlying these impacts. Changes in species richness associated with plant invasions must occur through local changes in extinction and/or colonization rates within the community. We used long‐term, permanent plot data to evaluate the impacts of the exotic vine Lonicera japonica. Over time, species richness declined with increasing L. japonica cover. L. japonica reduced local colonization rates but had no effect on extinction rates. Furthermore, we detected significant reductions in the immigration of individual species as invasion severity increased, showing that some species are more susceptible to invasion than others. These findings suggest that declines in species richness associated with L. japonica invasion resulted from effects on local colonization rates only and not through the competitive displacement of established species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号