首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Siglec family of receptors mediates cell-surface interactions through recognition of sialylated glycoconjugates. Previously reported structures of the N-terminal domain of the Siglec sialoadhesin (SnD1) in complex with various sialic acid analogs revealed the structural template for sialic acid binding. To characterize further the carbohydrate-binding properties, we have determined the crystal structures of SnD1 in the absence of ligand, and in complex with 2-benzyl-Neu5NPro and 2-benzyl-Neu5NAc. These structures reveal that SnD1 undergoes very few structural changes on ligand binding and detail how two novel classes of sialic acid analogs bind, one of which unexpectedly can induce Siglec dimerization. In conjunction with in silico analysis, this set of structures informs us about the design of putative ligands with enhanced binding affinities and specificities to different Siglecs, and provides data with which to test the effectiveness of different computational drug design protocols.  相似文献   

2.
3.
Sialoadhesin is a sialic acid-binding immunoglobulin-like lectin (Siglec), expressed on subsets of macrophages. It is a model system for Siglec receptor-mediated cell surface interactions through binding of sialylated glycoconjugates. The N-terminal sialoadhesin domain can mediate sialic acid-binding on its own. The structure of this domain has been determined in complex with a sialic acid-containing heptapeptide, (Ala-Gly-His-Thr(Neu5Ac)-Trp-Gly-His). The affinity of sialoadhesin for this ligand is four times higher than the affinity for the natural linkage 2,3'-sialyllactose. The structure of the glycopeptide complex suggests strategies for ligand optimization and provides possible explanations for the observed differences in specificities among the Siglecs.  相似文献   

4.
Sialic acid-binding immunoglobulin-like lectins (Siglecs) recognize sialylated glycoconjugates and play a role in cell-cell recognition. Siglec-7 is expressed on natural killer cells and displays unique ligand binding properties different from other members of the Siglec family. Here we describe the high resolution structures of the N-terminal V-set Ig-like domain of Siglec-7 in two crystal forms, at 1.75 and 1.9 A. The latter crystal form reveals the full structure of this domain and allows us to speculate on the differential ligand binding properties displayed by members of the Siglec family. A fully ordered N-linked glycan is observed, tethered by tight interactions with symmetry-related protein molecules in the crystal. Comparison of the structure with that of sialoadhesin and a model of Siglec-9 shows that the unique preference of Siglec-7 for alpha(2,8)-linked disialic acid is likely to reside in the C-C' loop, which is variable in the Siglec family. In the Siglec-7 structure, the ligand-binding pocket is occupied by a loop of a symmetry-related molecule, mimicking the interactions with sialic acid.  相似文献   

5.
We report the expression cloning of a novel leptin-binding protein of the immunoglobulin superfamily (OB-BP1) and a cross-hybridizing clone (OB-BP2) that is identical to a recently described sialic acid-binding I-type lectin called Siglec-5. Comparisons to other known Siglec family members (CD22, CD33, myelin-associated glycoprotein, and sialoadhesin) show that OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 constitute a unique related subgroup with a high level of overall amino acid identity: OB-BP1 versus Siglec-5 (59%), OB-BP1 versus CD33 (63%), and OB-BP2/Siglec-5 versus CD33 (56%). The cytoplasmic domains are not as highly conserved, but display novel motifs which are putative sites of tyrosine phosphorylation, including an immunoreceptor tyrosine kinase inhibitory motif and a motif found in SLAM and SLAM-like proteins. Human tissues showed high levels of OB-BP1 mRNA in placenta and moderate expression in spleen, peripheral blood leukocytes, and small intestine. OB-BP2/Siglec-5 mRNA was detected in peripheral blood leukocytes, lung, spleen, and placenta. A monoclonal antibody specific for OB-BP1 confirmed high expression in the cyto- and syncytiotrophoblasts of the placenta. Using this antibody on peripheral blood leukocytes showed an almost exclusive expression pattern on B cells. Recombinant forms of the extracellular domains of OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 were assayed for specific binding of leptin. While OB-BP1 exhibited tight binding (K(d) 91 nM), the other two showed weak binding with K(d) values in the 1-2 microM range. Studies with sialylated ligands indicated that OB-BP1 selectively bound Neu5Acalpha2-6GalNAcalpha (sialyl-Tn) allowing its formal designation as Siglec-6. The identification of OB-BP1/Siglec-6 as a Siglec family member, coupled with its restricted expression pattern, suggests that it may mediate cell-cell recognition events by interacting with sialylated glycoprotein ligands expressed on specific cell populations. We also propose a role for OB-BP1 in leptin physiology, as a molecular sink to regulate leptin serum levels.  相似文献   

6.
Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid.  相似文献   

7.
A novel mouse Siglec (mSiglec-F) belonging to the subfamily of Siglec-3-related Siglecs has been cloned and characterized. Unlike most human Siglec-3 (hSiglec-3)-related Siglecs with promiscuous linkage specificity, mSiglec-F shows a strong preference for alpha2-3-linked sialic acids. It is predominantly expressed in immature cells of the myelomonocytic lineage and in a subset of CD11b (Mac-1)-positive cells in some tissues. As with previously cloned Siglec-3-related mSiglecs, the lack of strong sequence similarity to a singular hSiglec made identification of the human ortholog difficult. We therefore conducted a comprehensive comparison of Siglecs between the human and mouse genomes. The mouse genome contains eight Siglec genes, whereas the human genome contains 11 Siglec genes and a Siglec-like gene. Although a one-to-one orthologous correspondence between human and mouse Siglecs 1, 2, and 4 is confirmed, the Siglec-3-related Siglecs showed marked differences between human and mouse. We found only four Siglec genes and two pseudogenes in the mouse chromosome 7 region syntenic to the Siglec-3-related gene cluster on human chromosome 19, which, in contrast, contains seven Siglec genes, a Siglec-like gene, and thirteen pseudogenes. Although analysis of gene maps and exon structures allows tentative assignments of mouse-human Siglec ortholog pairs, the possibility of unequal genetic recombination makes the assignments inconclusive. We therefore support a temporary lettered nomenclature for additional mouse Siglecs. Current information suggests that mSiglec-F is likely a hSiglec-5 ortholog. The previously reported mSiglec-3/CD33 and mSiglec-E/MIS are likely orthologs of hSiglec-3 and hSiglec-9, respectively. The other Siglec-3-like gene in the cluster (mSiglec-G) is probably a hSiglec-10 ortholog. Another mouse gene (mSiglec-H), without an apparent human ortholog, lies outside of the cluster. Thus, although some duplications of Siglec-3-related genes predated separation of the primate and rodent lineages (about 80-100 million years ago), this gene cluster underwent extensive duplications in the primate lineage thereafter.  相似文献   

8.
The expression of the Siglec family of molecules by hematopoietic cells from uninfected and SIV infected disease susceptible rhesus macaques (RM) and SIV infected disease resistant sooty mangabeys (SM) and for comparison humans was carried out. The predominant cell lineage in all three species expressing Siglec's was monocytes. The major finding by both a cross sectional and a prospective SIV infection study showed that, whereas monocytes from RM show marked increase in each Siglec constitutively expressed, monocytes from SM showed marked decreases in Siglec-1 expression. While monocytes from all three species constitutively expressed Siglec-3, human monocytes in addition expressed Siglec-5 and -9 and to a lower density 7, monocytes from RM expressed Siglec-7 and those from SM expressed Siglec-1. Monocytes from all three species, however, expressed mRNA for Siglec-1, -5, -7 and -9. The reasons for the failure to detect these molecules at the protein level and the mechanisms for such distinct effects of SIV infection on Siglec expression are discussed.  相似文献   

9.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

10.
BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) infects macrophages effectively, despite relatively low levels of cell surface-expressed CD4. Although HIV-1 infections are defined by viral tropisms according to chemokine receptor usage (R5 and X4), variations in infection are common within both R5- and X4-tropic viruses, indicating additional factors may contribute to viral tropism. METHODOLOGY AND PRINCIPAL FINDINGS: Using both solution and cell surface binding experiments, we showed that R5- and X4-tropic HIV-1 gp120 proteins recognized a family of I-type lectin receptors, the Sialic acid-binding immunoglobulin-like lectins (Siglec). The recognition was through envelope-associated sialic acids that promoted viral adhesion to macrophages. The sialic acid-mediated viral-host interaction facilitated both R5-tropic pseudovirus and HIV-1(BaL) infection of macrophages. The high affinity Siglec-1 contributed the most to HIV-1 infection and the variation in Siglec-1 expression on primary macrophages from different donors was associated statistically with sialic acid-facilitated viral infection. Furthermore, envelope-associated sialoglycan variations on various strains of R5-tropic viruses also affected infection. CONCLUSIONS AND SIGNIFICANCE OF THE FINDINGS: Our study showed that sialic acids on the viral envelope facilitated HIV-1 infection of macrophages through interacting with Siglec receptors, and the expression of Siglec-1 correlated with viral sialic acid-mediated host attachment. This glycan-mediated viral adhesion underscores the importance of viral sialic acids in HIV infection and pathogenesis, and suggests a novel class of antiviral compounds targeting Siglec receptors.  相似文献   

11.
The common sialic acids of mammalian cells are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans are an exception, because of a mutation in CMP-sialic acid hydroxylase, which occurred after our common ancestor with great apes. We asked if the resulting loss of Neu5Gc and increase in Neu5Ac in humans alters the biology of the siglecs, which are Ig superfamily members that recognize sialic acids. Human siglec-1 (sialoadhesin) strongly prefers Neu5Ac over Neu5Gc. Thus, humans have a higher density of siglec-1 ligands than great apes. Siglec-1-positive macrophages in humans are found primarily in the perifollicular zone, whereas in chimpanzees they also occur in the marginal zone and surrounding the periarteriolar lymphocyte sheaths. Although only a subset of chimpanzee macrophages express siglec-1, most human macrophages are positive. A known evolutionary difference is the strong preference of mouse siglec-2 (CD22) for Neu5Gc, contrasting with human siglec-2, which binds Neu5Ac equally well. To ask when the preference for Neu5Gc was adjusted in the human lineage, we cloned the first three extracellular domains of siglec-2 from all of the great apes and examined their preference. In fact, siglec-2 had evolved a higher degree of recognition flexibility before Neu5Gc was lost in humans. Human siglec-3 (CD33) and siglec-6 (obesity-binding protein 1) also recognize both Neu5Ac and Neu5Gc, and siglec-5 may have some preference for Neu5Gc. Others showed that siglec-4a (myelin-associated glycoprotein) prefers Neu5Ac over Neu5Gc. Thus, the human loss of Neu5Gc may alter biological processes involving siglec-1, and possibly, siglec-4a or -5.  相似文献   

12.
Siglec-2 is a mammalian sialic acid binding protein expressed on B-cell surfaces and is involved in the modulation of B-cell mediated immune response. We synthesized a unique starfish ganglioside, AG2 pentasaccharide Gal(1–3)Gal(1–4)Neu5Acα(2–3)Gal(1–4)Glcp, and found that the synthetic pentasaccharide binds to human Siglec-2 by performing 1H NMR experiments. Saturation transfer difference NMR experiments indicated that the C7–C9 side-chain and the acetamide moiety of the central sialic acid residue were located in the binding face of human Siglec-2. We determined the binding epitope of AG2 pentasaccharide to human Siglec-2, as the Gal(1–4)Neu5Acα(2–3)Galp unit.  相似文献   

13.
Siglecs are vertebrate cell-surface receptors that recognize sialylated glycans. Here we have identified and characterized a novel Siglec, named Siglec-15. Siglec-15 is a type-I transmembrane protein consisting of: (i) two immunoglobulin (Ig)-like domains, (ii) a transmembrane domain containing a lysine residue, and (iii) a short cytoplasmic tail. Siglec-15 is expressed on macrophages and/or dendritic cells of human spleen and lymph nodes. We show that the extracellular domain of Siglec-15 preferentially recognizes the Neu5Acalpha2-6GalNAcalpha- structure. Siglec-15 associates with the activating adaptor proteins DNAX activation protein (DAP)12 and DAP10 via its lysine residue in the transmembrane domain, implying that it functions as an activating signaling molecule. Siglec-15 is the second human Siglec identified to have an activating signaling potential; unlike Siglec-14, however, it does not have an inhibitory counterpart. Orthologs of Siglec-15 are present not only in mammals but also in other branches of vertebrates; in contrast, no other known Siglec expressed in the immune system has been conserved throughout vertebrate evolution. Thus, Siglec-15 probably plays a conserved, regulatory role in the immune system of vertebrates.  相似文献   

14.
We recently identified a novel human sialic acid binding immunoglobulin-like lectin, Siglec-8, using mRNA from human eosinophils. To search for a mouse Siglec (mSiglec) ortholog of Siglec-8 and other mouse Siglec paralogs, we conducted public database searches with cDNA sequences of human Siglec-5 to -10 and identified two novel mSiglecs. One has significant sequence identity to human Siglec-5 and is a splice variant of mSiglec-F. The other has greatest sequence identity to human Siglec-10 (mSiglec-G). Both mSiglecs have extracellular Ig-like domains and intracellular tyrosine-based motifs. To determine whether these mSiglecs were relevant to mouse eosinophils, RT-PCR and Northern blot analysis were performed. We detected expression of mSiglec-5 (or -F), -10, and -E mRNA in purified mouse eosinophils, but Northern blot data comparing expression in tissues from normal, IL-5 transgenic, and allergen-sensitized and -challenged mice suggest that mSiglec-10 is probably most relevant to mouse eosinophils.  相似文献   

15.
Here we characterize the properties and expression pattern of Siglec-9 (sialic acid-binding Ig-like lectin-9), a new member of the Siglec subgroup of the immunoglobulin superfamily. A full-length cDNA encoding Siglec-9 was isolated from a dibutyryl cAMP-treated HL-60 cell cDNA library. Siglec-9 is predicted to contain three extracellular immunoglobulin-like domains that comprise an N-terminal V-set domain and two C2-set domains, a transmembrane region and a cytoplasmic tail containing two putative tyrosine-based signaling motifs. Overall, Siglec-9 is approximately 80% identical in amino acid sequence to Siglec-7, suggesting that the genes encoding these two proteins arose relatively recently by gene duplication. Binding assays showed that, similar to Siglec-7, Siglec-9 recognized sialic acid in either the alpha2,3- or alpha2, 6-glycosidic linkage to galactose. Using a specific mAb, Siglec-9 was found to be expressed at high or intermediate levels by monocytes, neutrophils, and a minor population of CD16(+), CD56(-) cells. Weaker expression was observed on approximately 50% of B cells and NK cells and minor subsets of CD8(+) T cells and CD4(+) T cells. These results show that despite their high degree of sequence similarity, Siglec-7 and Siglec-9 have distinct expression profiles.  相似文献   

16.
Most mammalian cell surfaces display two major sialic acids (Sias), N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans lack Neu5Gc due to a mutation in CMP-Neu5Ac hydroxylase, which occurred after evolutionary divergence from great apes. We describe an apparent consequence of human Neu5Gc loss: domain-specific functional adaptation of Siglec-9, a member of the family of sialic acid-binding receptors of innate immune cells designated the CD33-related Siglecs (CD33rSiglecs). Binding studies on recombinant human Siglec-9 show recognition of both Neu5Ac and Neu5Gc. In striking contrast, chimpanzee and gorilla Siglec-9 strongly prefer binding Neu5Gc. Simultaneous probing of multiple endogenous CD33rSiglecs on circulating blood cells of human, chimp, or gorilla suggests that the binding differences observed for Siglec-9 are representative of multiple CD33rSiglecs. We conclude that Neu5Ac-binding ability of at least some human CD33rSiglecs is a derived state selected for following loss of Neu5Gc in the hominid lineage. These data also indicate that endogenous Sias (rather than surface Sias of bacterial pathogens) are the functional ligands of CD33rSiglecs and suggest that the endogenous Sia landscape is the major factor directing evolution of CD33rSiglec binding specificity. Exon-1-encoded Sia-recognizing domains of human and ape Siglec-9 share only approximately 93-95% amino acid identity. In contrast, the immediately adjacent intron and exon 2 have the approximately 98-100% identity typically observed among these species. Together, our findings suggest ongoing adaptive evolution specific to the Sia-binding domain, possibly of an episodic nature. Such domain-specific divergences should also be considered in upcoming comparisons of human and chimpanzee genomes.  相似文献   

17.
Siglecs are sialic acid-recognizing animal lectins of the immunoglobulin superfamily. We have cloned and characterized a novel human molecule, Siglec-11, that belongs to the subgroup of CD33/Siglec-3-related Siglecs. As with others in this subgroup, the cytosolic domain of Siglec-11 is phosphorylated at tyrosine residue(s) upon pervanadate treatment of cells and then recruits the protein-tyrosine phosphatases SHP-1 and SHP-2. However, Siglec-11 has several novel features relative to the other CD33/Siglec-3-related Siglecs. First, it binds specifically to alpha2-8-linked sialic acids. Second, unlike other CD33/Siglec-3-related Siglecs, Siglec-11 was not found on peripheral blood leukocytes. Instead, we observed its expression on macrophages in various tissues, such as liver Kupffer cells. Third, it was also expressed on brain microglia, thus becoming the second Siglec to be found in the nervous system. Fourth, whereas the Siglec-11 gene is on human chromosome 19, it lies outside the previously described CD33/Siglec-3-related Siglec cluster on this chromosome. Fifth, analyses of genome data bases indicate that Siglec-11 has no mouse ortholog and that it is likely to be the last canonical human Siglec to be reported. Finally, although Siglec-11 shows marked sequence similarity to human Siglec-10 in its extracellular domain, the cytosolic tail appears only distantly related. Analysis of genomic regions surrounding the Siglec-11 gene suggests that it is actually a chimeric molecule that arose from relatively recent gene duplication and recombination events, involving the extracellular domain of a closely related ancestral Siglec gene (which subsequently became a pseudogene) and a transmembrane and cytosolic tail derived from another ancestral Siglec.  相似文献   

18.
The sialic acid binding immunglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within the Siglec family, there exists a subgroup, which bears a high degree of homology with the molecule CD33 (Siglec-3), and has thus been designated the CD33-like subgroup of Siglecs. Members of this subgroup have been localized to chromosome 19q13.4. Through the positional candidate approach, we identified a novel potential member of this subgroup of Siglecs. We have characterized the complete genomic structure of this gene, determined its chromosomal localization, its homology to other members of the Siglec family, and its tissue expression profile. This new Siglec-like gene is comprised of 11 exons, with 10 intervening introns, and is localized 278 kb telomeric to Siglec-9 and 35 kb centromeric to Siglec-8 and on chromosome 19q13.4. The coding region consists of 2094 base pairs, and encodes for a putative 76.6 kDa protein. All Siglec-conserved structural features, including V-set domain, three C-set domains, transmembrane domain, ITIM and SLAM motifs, were found in this Siglec-like gene. Also, it has the conserved amino acids essential for sialic acid binding. The Siglec-like gene has 40-66% homology with members of the CD33-like subgroup, including Siglecs 5-9. Through RT-PCR we have examined the expression profile of this new gene in a panel of human tissues and found it to be primarily expressed in the bone marrow, spleen, brain, small intestine, colon, and spinal cord. We were also able to identify three different splice variants of the new gene. This gene may represent the latest novel member of the CD33-like subgroup of Siglecs, and, given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec-7.  相似文献   

19.
Macrophage subpopulations in the mouse express a lectin-like receptor, sialoadhesin (originally named sheep erythrocyte receptor, SER), which selectively recognizes sialoglycoconjugates and is likely to be involved in cellular interactions of stromal macrophages in haematopoietic and lymphoid tissues. In this report we describe the purification and ligand specificity of sialoadhesin isolated from mouse spleen. Purified sialoadhesin, a glycoprotein of 185 kd apparent Mr, agglutinated sheep or human erythrocytes at nanomolar concentrations in a sialic acid-dependent manner. Low angle shadowing and electron microscopy showed that sialoadhesin consisted of a globular head region of approximately 9 nm and an extended tail of approximately 35 nm. To investigate the specificity for sialic acid, we studied the interaction of sialoadhesin with derivatized human erythrocytes, glycoproteins, and glycolipids. In conclusion, sialoadhesin specifically recognizes the oligosaccharide sequence Neu5Ac alpha 2----3Gal beta 1----3GalNAc in either sialoglycoproteins or gangliosides. These findings imply that specific sialoglycoconjugates carrying this structure may be involved in cellular interactions between stromal macrophages and subpopulations of haematopoietic cells and lymphocytes.  相似文献   

20.
The Siglecs (sialic acid-binding Ig-like lectins) are a subfamily of I-type lectins, which specifically recognize sialic acids. Nine members of the family have been identified thus far. We have obtained a novel cDNA clone from a human dendritic cell cDNA library encoding a protein with sequence and structural features of the Siglec family, hence designated as Siglec-10. The full-length Siglec-10 cDNA encodes a type 1 transmembrane protein containing four extracellular immunoglobulin-like domains, a transmembrane region, and a cytoplasmic tail with two classical immunoreceptor tyrosine-based inhibitory motifs. The N-terminal V-set Ig domain has most of the amino acid residues typical of the Siglecs. Siglec-10 shows the closest homology to Siglec-5 and Siglec-3/CD33. Various cells and cell lines including monocytes and dendritic cells express Siglec-10. High levels of mRNA expression were seen in peripheral blood leukocytes, spleen, and liver. When expressed on COS-7 cells, Siglec-10 was able to bind human red blood cells and soluble sialoglycoconjugates in a sialic acid-dependent manner. The identification of Siglec-10 as a new Siglec family member and its expression profile, together with its sialic acid-dependent binding capacity, suggest that it may be involved in cell-cell recognition by interacting with sialylated ligands expressed on specific cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号