首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1986,124(2):101-114
The Pt L3 X-ray absorption spectra of a series of Pt compounds have been recorded and their extended fine structure (EXAFS) analysed to investigate the sensitivity of EXAFS to non-first-shell PtPt distances. The Pt L3 EXAFS spectra of complexes formed between [(NH3)2Pt(OH)2Pt(NH3)2]2+ and calf thymus DNA were also recorded. PtPt vectors could not be detected in these spectra. When combined with the model compound studies, this result rules out Pt dimer structures for the PtDNA complex which involve rigidly bridged, adjacent Pt atoms. Such structures, based on dimeric bonding of a hydroxo dimer intermediate to DNA, have been proposed as models for cisplatin antitumor activity. These types of models now seem unlikely.  相似文献   

2.
The interaction of [Ru(NH3)5Cl]2+ and [Ru(NH3)6]3+ complex ions with calf thymus DNA has been studied at various r values (r = [Mn+]/[DNA-P]). Electronic spectra of metal-DNA solutions have been recorded and compared to the spectra of metal, as well as of DNA, solutions. Melting curves have been taken for the determination of DNA melting temperature (Tm) in the presence of the above complex ions. The results showed a biphasic melting of the DNA strands for relatively high r values. The Tm for the first phase increased with increasing r values, indicating metal ion interaction with the phosphate moieties of the DNA. The appearance of a second-phase melting, in connection with electronic spectra, pH values, and conductivity measurements of metal ion solutions, is indicative of the initial complexes' transformation to [Ru(NH3)5OH]2+, which binds preferentially to double-stranded rather than single-stranded DNA, thus leading to a second melting curve at a higher temperature than the first one.  相似文献   

3.
The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported (Faggiani et al., Can. J. Chem. 60:529, 1982), in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which makes possible discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is used to conduct a new vibrational analysis using both group-theoretical and modern density functional theory methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance.  相似文献   

4.
《Inorganica chimica acta》1988,141(1):145-149
This contribution reports the synthesis and characterization of the organothorium alkylthiolate complex [(CH3)5C5]2Th(SCH2CH2CH3)2. This compound crystallizes in the monoclinic space group C2/c (#15) with four molecules in a cell of dimensions a=19.066(2), b=11.603(1), c=16.379(2) Å, and β=130.08(1)°. Least-squares refinement led to a value for the conventional R index (on Fo) of 0.040 for 132 variables and 2030 observations having Fo2⩾3σ(Fo2). The molecular structure consists of an unexceptional ‘bent sandwich’ [(CH3)5C5]2Th fragment coordinated to two n-propylthiolate ligands. The ThS bond distance is 2.718(3) Å; the SC(α) distance, 1.78(2) Å; the ThSC(α) angle, 108.3(5)°; and the SThS′ angle, 102.5(2)°. Contrasts are drawn with the structures of analogous actinide alkoxides  相似文献   

5.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

6.
The bis-chelated tetrahedral gold(I) complex [Au(dppe)2]Cl, where dppe is Ph2P(CH2)2PPh2, is active in several animal tumor models. When added to human blood plasma in vitro it appears to bind to lipoproteins, giving a slightly broadened 31P NMR signal, and 1H NMR resonances which are too broad to detect. Some lipoprotein is denatured. 31P NMR studies suggest that some [Au(dppe)2]+ is transferred from plasma to red cells with a half-life of ca. 2 hr. The complex binds within red cell membranes and the 1H resonances of intracellular glutathione are unaffected. The 31P NMR resonance from [Au(dppe)2]+ in red cell membranes is observable only when the complex is mobilized by addition of sodium dodecyl sulphate, which also mobilizes membrane phospholipids.  相似文献   

7.
《Inorganica chimica acta》1987,130(2):183-184
cis,cis,trans-[PtIV(NH3)2Cl2(OH)2] reacts reversibly with ascorbic acid to give dehydroascorbic acid and mainly cis-[PtII(NH2Pri)2Cl2]. The parameters for the forward reaction are: kf = 0.584 M s at 37.0 °C, ΔHf = 108.6 −+ 6.4 kJ mol−1 andΔSf = 101 −+ 22 J K−1 mol−1.  相似文献   

8.
Methane hydroxylase (MH) from the obligate methane assimilating culture of Methylococcus thermophilus catalyses oxygenation of both CH4+ and NH4+; therefore, we studied the specificity of enzyme systems catalysing the subsequent oxidation of compounds produced upon the oxygenation of these substrates (CH3OH and NH2OH). CH3OH and NH2OH were shown to be oxidized by different enzymes, viz. methanol dehydrogenase (MD) and hydroxylamine oxidase (HO), respectively. Similar to MH, MD is characterized by the absence of strict substrate specificity, and catalyses oxidation of primary alcohols other than methanol, rather than hydroxylamine. HO catalyses oxidation of hydroxylamine rather than methanol and possesses the activity of hydroxylamine:cytochrome c oxidoreductase. The constitutive character of HO from the methane assimilating bacteria and the substrate specificity of the enzyme suggest that a lithotrophic pathway for producing energy operates in these bacteria. The HO of Methylococcus thermophilus is similar in certain properties to the HO of the nitrifying bacterium Nitrosomonas europaea.  相似文献   

9.
Reactions of cis-[Ru(en)2(OH2)2]2+ (or cis-[Ru (NH3)4(OH2)2]2+) with Pseudomonas aeruginosa azurin (Az), horse heart myoglobin (Mbh), and horse heart cytochrome c (cyt c) give Ru-labelled proteins. The ruthenium binding sites in the singly modified derivatives are His-83 (Az), His-81 (Mbh), and His-33 (cyt c). Spectroscopic and electrochemical measurements indicate that the structures of the proteins are not perturbed by the surface-bound ruthenium complexes. The E°f values of the Ru(III)/(II) couple in these Ru-modified proteins fall between −0.07 and −0.13 V vs. NHE.  相似文献   

10.
Two inhibitor-containing 'half-sandwich' cobalt(II) complexes [(TpPh)Co(X)(CH3OH)m] x nCH3OH ((TpPh) = hydrotris (3-phenylpyrazolyl)borate; 1: X- = N3-, m = 1, n = 2; 2: X- = NCS-, m = 0, n = 0) have been synthesized and used as the catalysts in the bicarbonate dehydration reaction. The structures of 1 and 2 were determined by X-ray diffraction analysis, which shows that N3- and NCS- coordinate to the Co(II) ions of 1 and 2, respectively, with the Co-N bond lengths of 1.992(6) A and 1.901(3) A. The coordination geometries of the Co(II) complexes in solution are five-coordinated trigonal bipyramid as revealed by the spectroscopic measurements. The dehydration kinetic measurements of HCO3- are performed by the stopped-flow techniques at pH < 7.9. The apparent dehydration rate constant k(obs) varies linearly with Co(II) complex and H+ concentrations, respectively, and the catalytic activity of 2 is lower than that of 1. The aqua Co(II) complex must be the reactive catalytic species in the catalyzed dehydration reaction and the rate-determining step is the substitution of the labile water molecule by HCO3-. The k(obs) values increase with increasing reaction temperature, and the large negative entropy of activation also indicates the associative activation mode. The inhibition ability of NCS- is stronger than that of N3-, which can be rationalized by the decreases in the Co-N(N3-/NCS-) bond lengths and effective atomic charges of the Co(II) ions based on the X-ray crystallographic data and theoretical calculations in this work.  相似文献   

11.
《Inorganica chimica acta》1986,124(4):187-198
The redox behavior of the head-to-head bis(μ- (1-methyluracilato-N3,O2)-bis(cis-diammine platinum(II)) dinitrate, PtMeU, and platinum 1-methyluracil blue, PtMeUB, was studied by cyclic voltammetry (CV), rotating disk voltammetry (RDV), and controlled-potential coulometry (CPC). Redox titrimetry, electrochemistry/electron paramagnetic resonance spectroscopy (EPR), and liquid chromatography (LC) served as complementary techniques. The former reactant exhibits two-step electro-oxidation, consistent with the formation of a mixed-valence Pt(II, III) state en route to Pt(III, III). The latter also appears to oxidize to a uniform Pt(III) state. Although the oxidative-reductive electrochemistry of both reactants exhibits chemical reversibility, the heterogeneous electron-transfer kinetics are notably sluggish. The latter appears to be associated with the formation of an inhibiting film on the electrode surface. A slow conversion of PtMeU to a PtMeUB-like state was revealed by CV and LC. The complex, oligomeric nature of PtMeUB was revealed by means of gradient LC examination. Comparing oxidative and reductive electrolysis curves for PtMeUB yielded an average platinum oxidation state of 2.08. All observed behavior for PtMeUB, as well as for PtMeU, is accounted for by invoking +2 and +3 oxidation states for platinum; redox titrimetry using Ce(IV) revealed inconsequential oxidation of both of these systems beyond the III state. An estimate of molecular weight for the platinum blue was made by employing RDV in conjunction with the Einstein-Stokes equation.  相似文献   

12.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

13.
In the present study the nature and the hydrolysis of DNA-Pt complexes with the platinum compounds, [Pt(dien)Cl]Cl, trans- and cis-Pt(NH3)2Cl2, using potentiometric chloride determinations, have been investigated. The trans-Pt(NH3)2Cl2 and the [Pt(dien)Cl]Cl react with the GC planes at the N7(G) sites, while the cis-Pt(NH3)2Cl2 compound reacts with the GC planes and forms a chelate by using the N7(G) and O6(G) sites. The complex is a specific 1:1 Pt:DNA adduct. The platinum atom in cis-Pt(NH3)2Cl2 liberates both chlorine atoms on chelation. A mechanism for the in vivo antitumor activity of the cis-Pt(NH3)2Cl2 is proposed and the structure activity relationship is discussed.  相似文献   

14.
The activity against human cancer cell lines including ovarian: A2780, A2780(cisR), cell up take, DNA-binding and nature of interaction with pBR322 plasmid DNA have been studied for four multinuclear complexes code named DH4Cl, DH5Cl, DH6Cl and DH7Cl, having the general formula: [[trans-PtCl(NH(3))(2)](2)mu-[trans-Pd(NH(3))(2)-(H(2)N(CH(2))(n)NH(2))(2)]]Cl(4) where n=4, 5, 6 and 7 for DH4Cl, DH5Cl, DH6Cl and DH7Cl, respectively. The compounds are found to exhibit significant anticancer activity against ovarian cancer cell lines: A2780, A2780(cisR) and A2780(ZD0473R). DH6Cl in which the linking diamine has six carbon atoms is found to be the most active compound. As the number of carbon atoms in the linking diamine is decreased below six and increased above six, the activity is found to decrease, illustrating structure-activity relationship. All the multinuclear compounds are believed to form a plethora of long-range interstrand GG adducts with DNA dictated by the sequence of bases in the DNA strands. Increasing prevention of BamH1 digestion with the increase in concentration of the compounds is due to global changes in DNA conformation brought about by interstrand long-range binding of the compounds with DNA.  相似文献   

15.
The reactions of PtCl2en or cis-Pt(NH3)2Cl2 and their aqua species with adenine and adenosine were studied by means of ion-pair HPLC. From the chromatograms, it was found that the first binding site of Pt(II) was the N(7) site of adenine under both acidic and neutral conditions. The rates of Pt(II) binding at the (N7) site of adenosine and deoxyadenosine were measured. The rate constants, k1, were obtained for the reactions of PtCl2en or cis-Pt(NH3)2Cl2 with adenosine and deoxyadenosine at pH 3 and 7 over the temperature range 9–25 °C. The k1 values were 6.8–7.7 × 10−4 dm3 mol−1 s−1 at 25 °C. For the aqua species, the rate of [cis-Pt(NH3)2ClH2O]+ with adenosine N(7) was measured. The rate constants, k2 which were found to be smaller than those of hydrolysis, kh, were calculated at pH 3 over the temperature range 25–40 °C. The k2 value obtained at 25 °C was 1.1 × 10−2 dm3 mol−1 s−1, 15 time larger than k1. The activation parameters were also calculated.  相似文献   

16.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

17.
The diastereomeric complexes Lambda- and Delta-[Ru(bpy)(2)(m-bpy-7p)]Cl(2), (bpy=2,2'-bipyridine, m-bpy-7p=4-methyl-4'-Arg-Gly-Asn-Ala-His-Glu-Arg-CONH(2)-2,2'-bipyridine) were synthesized and characterized and their binding properties to the deoxynucleotide duplexes d(5'-CGCGATCGCG-3')(2) and d(5'-GCGCTTAAGCGC-3')(2) were studied by means of (1)H NMR spectroscopy. 7p is part of the recognition loop of the restriction endonuclease MunI, a type II restriction enzyme from Mycoplasma unidentified which recognizes the palindromic hexanucleotide sequence C/AATTG and cleaves it as indicated by the slash. The Delta-isomer binds to the terminal CG/GC major groove of d(CGCGATCGCG)(2) decanucleotide, whereas the Lambda-isomer approaches the GCT/CGA sequence. On the other hand, weak binding of the Delta-isomer to the end of d(GCGCTTAAGCGC)(2) into two different orientations is observed. In the case of the Lambda-isomer, the bpy ligand(s) are located into the major groove of the central TT/AA sequence. The role of appended peptide sequences in sequence selectivity binding to DNA is being addressed.  相似文献   

18.
《Inorganica chimica acta》2005,358(2):303-309
The reactions of two equivalents of the ligands POT or POZ with one equivalent of the rhodium complex [Rh(μ-Cl)(CO)2]2 afford the complexes [(POT)Rh(CO)Cl] (1) and [(POZ)Rh(CO)Cl] (2), respectively. The crystal structures of both complexes have been determined showing the rhodium centers to be into slightly distorted square planar environments. Preliminary screening of the catalytic systems POT/Rh and POZ/Rh in the asymmetric hydroformylation of styrene has been carried out.  相似文献   

19.
The reaction of trans-diamminedichloroplatinum(II) (trans-DDP), the inactive isomer of the anticancer drug cisplatin, with the single-stranded deoxydodecanucleotide d(CCTCGAGTCTCC) in aqueous solution at 37 degrees C was monitored by reversed-phase HPLC. Consumption of the dodecamer follows pseudo-first-order reaction kinetics with a rate constant of 1.25 (4) x 10(-4) s-1. Two intermediates, shown to be monofunctional adducts in which Pt is coordinated to the guanine N7 positions, were trapped with NH4(HCO3) and identified by enzymatic degradation analysis. These monofunctional adducts and a third, less abundant, one are rapidly removed from the DNA by thiourea under mild conditions. When allowed to react further, the monofunctional intermediates formed a single main product that was characterized by 1H NMR spectroscopy and enzymatic digestion as the bifunctional 1,3-intrastrand cross-link trans-[Pt(NH3)2[d(CCTCGAGTCTCC)-N7-G(5),N7-G(7]]). Binding of the trans-[Pt(NH3)2]2+ moiety to the guanosine N7 positions decreases the pKa at N1 and leads to destacking of the intervening A(6) base. The double-stranded trans-DDP-modified and unmodified DNAs were obtained by annealing the complementary strand to the corresponding single strands and then studied by 31P and 1H NMR and UV spectroscopy. trans-DDP binding does not induce large changes in the O-P-O bond or torsional angles of the phosphodiester linkages in the duplex, nor does it significantly alter the UV melting temperature. trans-DDP binding does, however, cause the imino protons of the platinated duplex to exchange rapidly with solvent by 50 degrees C, a phenomenon that occurs at 65 degrees C for the unmodified duplex. A structural model for the platinated double-stranded oligonucleotide was generated through molecular dynamics calculations. This model reveals that the trans-DDP bifunctional adduct can be accommodated within the double helix with minimal distortion of the O-P-O angles and only local disruption of base pairing and destacking of the platinated bases. The model also predicts hydrogen bond formation involving coordinated ammine ligands that bridge the two strands.  相似文献   

20.
Four new trans-planaramineplatinum(II) complexes, three of the form: trans-PtCl2L2, code named CH1, CH2 and CH4 where L = 3-hydroxypyridine, 4-hydroxypyridine and imidazo[1,2-alpha]pyridine, respectively, and one of the form: PtClL3, code named CH3 where L = 3-hydroxypyridine, have been prepared and characterized by elemental analyses and IR, Raman, mass and 1H NMR spectral studies. The interactions of the compounds with salmon sperm and pBR322 plasmid DNAs have been investigated and their activity against human ovarian cancer cell lines: A2780, A2780cisR and A2780ZD0473R have also been determined. The compounds are believed to form mainly monofunctional N7(G) and bifunctional intrastrand N7(G)N7(G) adducts with DNA, causing a local distortion of DNA as a result of which gel mobility of the DNA changes. The compound containing three planaramine ligands per molecule (CH3) is found to be less reactive than the compounds containing two planaramine ligands per molecule (CH1, CH2 and CH4), which in turn are less reactive than compounds containing one of the same planaramine ligands per molecule. The decrease in reactivity is reflected in lower molar conductivity values (indicating lower degree of dissociation), less pronounced changes caused to DNA conformation (indicating decreased level of platinum-DNA binding) and lower activity. The decreased reactivity of the compounds is due to a greater steric crowding produced by the bulky planaramine ligands. Changes in DNA conformation are also found to be a function of the actual nature of the planaramine ligand. The results illustrate structure-activity relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号