首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight regulation of stem cell proliferation is fundamental to tissue homeostasis, aging and tumor suppression. Although stem cells are characterized by their high potential to proliferate throughout the life of the organism, the mechanisms that regulate the cell cycle of stem cells remain poorly understood. Here, we show that the Cdc25 homolog String (Stg) is a crucial regulator of germline stem cells (GSCs) and cyst stem cells (CySCs) in Drosophila testis. Through knockdown and overexpression experiments, we show that Stg is required for stem cell maintenance and that a decline in its expression during aging is a critical determinant of age-associated decline in stem cell function. Furthermore, we show that restoration of Stg expression reverses the age-associated decline in stem cell function but leads to late-onset tumors. We propose that Stg/Cdc25 is a crucial regulator of stem cell function during tissue homeostasis and aging.  相似文献   

2.
ORGANIZATION OF HAEMOPOIETIC STEM CELLS: THE GENERATION-AGE HYPOTHESIS   总被引:2,自引:0,他引:2  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 12 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half, to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

3.
Stem cell biology and neurodegenerative disease   总被引:5,自引:0,他引:5  
The fundamental basis of our work is that organs are generated by multipotent stem cells, whose properties we must understand to control tissue assembly or repair. Central nervous system (CNS) stem cells are now recognized as a well-defined population of precursors that differentiate into cells that are indisputably neurons and glial cells. Work from our group played an important role in defining stem cells of the CNS. Embryonic stem (ES) cells also differentiate to specific neuron and glial types through defined intermediates that are similar to the cellular precursors that normally occur in brain development. There is convincing evidence that the differentiated progeny of ES cells and CNS stem cells show expected functions of neurons and glia. Recent progress has been made on three fundamental developmental processes: (i) cell cycle control; (ii) the control of cell fate; and (iii) early steps in neural differentiation. In addition, our work on CNS stem cells has developed to a stage where there are clinical implications for Parkinson's and other degenerative disorders. These advances establish that stem cell biology contributes to our understanding of brain development and has great clinical promise.  相似文献   

4.
Planarians have regenerative ability made possible by pluripotent stem cells referred to as neoblasts. Classical ultrastructural studies have indicated that stem cells can be distinguished by a unique cytoplasmic structure known as the chromatoid body and their undifferentiated features, and they are specifically eliminated by X-ray irradiation. Recently, by using fluorescence activated cell sorting (FACS), planarian cells were separated into two X-ray-sensitive fractions (X1 and X2) and an X-ray-insensitive fraction (XIS) according to DNA content and cytoplasmic size. Here we analyzed the fractionated cells by transmission electron microscopy (TEM). First, we found that both undifferentiated cells (stem cells) and regenerative cells (differentiating cells) were concentrated in the X1 fraction containing the S/G2/M phase cells. The regenerative cells were considered to be committed stem cells or progenitor cells, suggesting that some stem cells may maintain proliferative ability even after cell fate-commitment. Second, we succeeded in identifying a new type of stem cells, which were small in size with few chromatoid bodies and a heterochromatin-rich nucleus. Interestingly, they were concentrated in the X2 fraction, containing G0/G1 phase cells. These results suggest that planarian stem cells are not homogeneous, but may consist of heterogeneous populations, like mammalian stem cells.  相似文献   

5.
Spermatogenesis is a complex and productive process that originates from stem cell spermatogonia and ultimately results in formation of mature spermatozoa. The stem cell undergoes self-renewal throughout life, but study of its biological characteristics has been difficult because a very small number (2 to 3 in 10(4) cells) exist in the testis and they can only be identified by function. Although the development of the spermatogonial transplantation technique has provided an assay system for stem cells, efficient methods to enrich stem cells have not been available. Here, we examined two infertile mouse models, Steel/Steel(Dickie)(Sl/Sl(d)) and experimental cryptorchid, as a source of testis cell populations enriched in stem cells. The Sl/Sl(d) testis showed little enrichment, which raises questions about how adult stem cell number is determined and about the currently accepted belief that adult stem cells are independent of Sl factor. The cells recovered from cryptorchid testes were enriched for stem cells 25-fold (colonies) or 50-fold (area) compared to wild-type testes. The cryptorchid condition does not affect stem cell activity, but eliminates almost all differentiated cells, and about 1 in 200 cells is a stem cell. Thus, cryptorchid testes provide an important approach for purification and characterization of spermatogonial stem cells.  相似文献   

6.
Organization of haemopoietic stem cells: the generation-age hypothesis.   总被引:3,自引:0,他引:3  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 13 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

7.
Wu DT  Seita Y  Zhang X  Lu CW  Roth MJ 《PloS one》2012,7(4):e34778
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.  相似文献   

8.
Drosophila oogenesis starts when a germline stem cell divides asymmetrically to generate a daughter germline stem cell and a cystoblast that will develop into a mature egg. We show that the fs(1)Yb gene is essential for the maintenance of germline stem cells during oogenesis. We delineate fs(1)Yb within a 6.4 kb genomic region by transgenic rescue experiments. fs(1)Yb encodes a 4.1 kb RNA that is present in the third instar larval, pupal and adult stages, consistent with its role in regulating germline stem cells during oogenesis. Germline clonal analysis shows that all fs(1)Yb mutations are soma-dependent. In the adult ovary, fs(1)Yb is specifically expressed in the terminal filament cells, suggesting that fs(1)Yb acts in these signaling cells to maintain germline stem cells. fs(1)Yb encodes a novel hydrophilic protein with no potential signal peptide or transmembrane domains, suggesting that this protein is not itself a signal but a key component of the signaling machinery for germline stem cell maintenance.  相似文献   

9.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

10.
Stem cell repopulation efficiency but not pool size is governed by p27(kip1)   总被引:24,自引:0,他引:24  
Sustained blood cell production requires preservation of a quiescent, multipotential stem cell pool that intermittently gives rise to progenitors with robust proliferative potential. The ability of cells to shift from a highly constrained to a vigorously active proliferative state is critical for maintaining stem cells while providing the responsiveness necessary for host defense. The cyclin-dependent kinase inhibitor (CDKI), p21(cip1/waf1) (p21) dominates stem cell kinetics. Here we report that another CDKI, p27(kip1) (p27), does not affect stem cell number, cell cycling, or self-renewal, but markedly alters progenitor proliferation and pool size. Therefore, distinct CDKIs govern the highly divergent stem and progenitor cell populations. When competitively transplanted, p27-deficient stem cells generate progenitors that eventually dominate blood cell production. Modulating p27 expression in a small number of stem cells may translate into effects on the majority of mature cells, thereby providing a strategy for potentiating the impact of transduced cells in stem cell gene therapy.  相似文献   

11.
Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density.Our analyses show that (i) in addition to myogenic progenitors, myofibers also harbor non-myogenic progenitors of a distinct, yet close, lineage; (ii) myofiber-associated non-myogenic and myogenic cells share the same muscle-bound primordial stem cells of a lineage distinct from bone marrow MSCs; (iii) these muscle-bound primordial stem-cells first part to individual muscles and then differentiate into myogenic and non-myogenic stem cells.  相似文献   

12.
In the field of stem cell research, SP (side population) phenotype is used to define the property that cells maintain a high efflux capability for some fluorescent dye, such as Hoechst 33342. Recently, many researches proposed that SP phenotype is a phenotype shared by some stem cells and some progenitor cells, and that SP phenotype is regarded as a candidate purification marker for stem cells. In this research, murine fertilized ova (including conjugate and single nucleus fertilized ova), 2-cell stage and 8-cell stage blastomeres, morulas and blastocysts were isolated and directly stained by Hoechst 33342 dye. The results show that fertilized ovum, blastomere and morula cells do not demonstrate any ability to efflux the dye. However, the inner cell mass (ICM) cells of blastocyst exhibit SP phenotype, which is consistent with the result of embryonic stem cells (ESCs) in vitro. These results indicate that the SP phenotype of ICM-derived ESCs is an intrinsic property and independent of the culture condition in vitro, and that SP phenotype is one of the characteristics of at least some pluripotent stem cells, but is not shared by totipotent stem cells. In addition, the result that the SP phenotype of ICM cells disappeared when the inhibitor verapamil was added into medium implies that the SP phenotype is directly associated with ABCG2. These results suggest that not all the stem cells demonstrate SP phenotype, and that SP phenotype might act as a purification marker for partial stem cells such as some pluripotent embryonic stem cells and multipotent adult stem cells, but not for all stem cells exampled by the totipotent stem cells in the very early stage of mouse embryos.  相似文献   

13.
The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.  相似文献   

14.
Stem cell therapy is a promising strategy to treat neurodegenerative diseases, traumatic brain injury, and stroke. For stem cells to progress towards clinical use, the risks associated with invasive intracranial surgery used to deliver the cells to the brain, needs to be reduced. Here, we show that MRI-guided focused ultrasound (MRIgFUS) is a novel method for non-invasive delivery of stem cells from the blood to the brain by opening the blood brain barrier (BBB) in specific brain regions. We used MRI guidance to target the ultrasound beam thereby delivering the iron-labeled, green fluorescent protein (GFP)-expressing neural stem cells specifically to the striatum and the hippocampus of the rat brain. Detection of cellular iron using MRI established that the cells crossed the BBB to enter the brain. After sacrifice, 24 hours later, immunohistochemical analysis confirmed the presence of GFP-positive cells in the targeted brain regions. We determined that the neural stem cells expressed common stem cell markers (nestin and polysialic acid) suggesting they survived after transplantation with MRIgFUS. Furthermore, delivered stem cells expressed doublecortin in vivo indicating the stem cells were capable of differentiating into neurons. Together, we demonstrate that transient opening of the BBB with MRIgFUS is sufficient for transplantation of stem cells from the blood to targeted brain structures. These results suggest that MRIgFUS may be an effective alternative to invasive intracranial surgery for stem cell transplantation.  相似文献   

15.
16.
In the field of stem cell research, SP (side population) phenotype is used to define the property that cells maintain a high efflux capability for some fluorescent dye, such as Hoechst 33342. Recently, many researches proposed that SP phenotype is a phenotype shared by some stem cells and some pro- genitor cells, and that SP phenotype is regarded as a candidate purification marker for stem cells. In this research, murine fertilized ova (including conjugate and single nucleus fertilized ova), 2-cell stage and 8-cell stage blastomeres, morulas and blastocysts were isolated and directly stained by Hoechst 33342 dye. The results show that fertilized ovum, blastomere and morula cells do not demonstrate any ability to efflux the dye. However, the inner cell mass (ICM) cells of blastocyst exhibit SP phenotype, which is consistent with the result of embryonic stem cells (ESCs) in vitro. These results indicate that the SP phenotype of ICM-derived ESCs is an intrinsic property and independent of the culture condition in vitro, and that SP phenotype is one of the characteristics of at least some pluripotent stem cells, but is not shared by totipotent stem cells. In addition, the result that the SP phenotype of ICM cells disap- peared when the inhibitor verapamil was added into medium implies that the SP phenotype is directly associated with ABCG2. These results suggest that not all the stem cells demonstrate SP phenotype, and that SP phenotype might act as a purification marker for partial stem cells such as some pluripo- tent embryonic stem cells and multipotent adult stem cells, but not for all stem cells exampled by the totipotent stem cells in the very early stage of mouse embryos.  相似文献   

17.
Recent studies have shown that treatments involving injection of stem cells into animals with damaged cardiac tissue result in improved cardiac functionality. Clinical trials have reported conflicting results concerning the recellularization of post-infarct collagen scars. No clear mechanism has so far emerged to fully explain how injected stem cells, specifically the commonly used mesenchymal stem cells (MSC) and endothelial precursor cells (EPC), help heal a damaged heart. Clearly, these injected stem cells must survive and thrive in the hypoxic environment that results after injury for any significant repair to occur. Here we discuss how ischemic preconditioning may lead to increased tolerance of stem cells to these harsh conditions and increase their survival and clinical potential after injection. As injected cells must reach the site in numbers large enough for repair to be functionally significant, homing mechanisms involved in stem cell migration are also discussed. We review the mechanisms of action stem cells may employ once they arrive at their target destination. These possible mechanisms include that the injected stem cells (1) secrete growth factors, (2) differentiate into cardiomyocytes to recellularize damaged tissue and strengthen the post-infarct scar, (3) transdifferentiate the host cells into cardiomyocytes, and (4) induce neovascularization. Finally, we discuss that tissue engineering may provide a standardized platform technology to produce clinically applicable stem cell products with these desired mechanistic capacities.  相似文献   

18.
Major questions about stem cell systems include what type(s) of stem cells are involved (unipotent/totipotent/pluripotent/multipotent stem cells) and how the self-renewal and differentiation of stem cells are regulated. Sponges, the sister group of all other animals and probably the earliest branching multicellular lineage of extant animals, are thought to possess totipotent stem cells. This review introduces what is known about the stem cells in sponges based on histological studies and also on recent molecular biological studies that have started to reveal the molecular and cellular mechanisms of the stem cell system in sponges (mainly in demosponges). The currently proposed model of the stem cell system in demosponges is described, and the possible applicability of this model to other classes of sponges is discussed. Finally, a possible scenario of the evolution of stem cells, including how migrating stem cells arose in the urmetazoan (the last common ancestor of metazoans) and the evolutionary origin of germ line cells in the urbilaterian (the last common ancestor of bilaterians), are discussed.  相似文献   

19.
Lectin microarrays have emerged as a novel platform for glycan analysis during recent years. Here, we have combined surface plasmon resonance imaging (SPRi) with the lectin microarray for rapid and label-free profiling of stem cells. In this direction, 40 lectins from seven different glyco-binding motifs and three different cell lines—mouse embryonic stem cells (mESCs), mouse-induced pluripotent stem cells (miPSCs), and mouse embryonic fibroblast stem cells (MEFs)—were used. Pluripotent mouse stem cells were clearly distinguished from non-pluripotent stem cells. Eight lectins—DBA, MAL, PHA_E, PHA_L, EEL, AAL, PNA, and SNA—generated maximal value to define pluripotency of mouse stem cells in our experiments. The discriminant function based on lectin reactivities was highly accurate for the determination of stem cell pluripotency. These results suggested that glycomic analysis of stem cells leads to a novel comprehensive approach for quality control in cell-based therapy and regenerative medicine.  相似文献   

20.
Recent technological advances in cell reprogramming by generation of induced pluripotent stem cells (iPSC) offer major perspectives in disease modelling and future hopes for providing novel stem cells sources in regenerative medicine. However, research on iPSC still requires refining the criteria of the pluripotency stage of these cells and exploration of their equivalent functionality to human embryonic stem cells (ESC). We report here on the use of infrared microspectroscopy to follow the spectral modification of somatic cells during the reprogramming process. We show that induced pluripotent stem cells (iPSC) adopt a chemical composition leading to a spectral signature indistinguishable from that of embryonic stem cells (ESC) and entirely different from that of the original somatic cells. Similarly, this technique allows a distinction to be made between partially and fully reprogrammed cells. We conclude that infrared microspectroscopy signature is a novel methodology to evaluate induced pluripotency and can be added to the tests currently used for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号