首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of soluble high potential type iron-sulfur protein (HiPIP) from beef heart mitochondria were compared to those of aconitase from pig heart. The two proteins when purified to homogeneity by the criteria of sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis show identical light absorption characteristics. EPR signals of the HiPIP type centered at g = 2.01 when oxidized, isoelectric points at pH 8.5 to 8.6, are inseparable by SDS-polyacrylamide electrophoresis, and exhibit aconitase activity when activated by reducing agents in the presence of ferrous iron. The requirement for activation goes parallel to the intensity of the signal from the oxidized iron-sulfur cluster, i.e. the cluster is reduced in the active enzyme. We conclude that the soluble mitochondrial HiPIP is identical with aconitase. The relationships of iron to labile sulfide, molecular weight and unpaired spins in the EPR signal, and implications of our findings for the role of iron in aconitase are discussed.  相似文献   

2.
The iron-sulfur protein present in the mitochondrial outer membrane has been partially purified from beef kidney cortex mitochondria be means of selective solubilization followed by DEAE-cellulose chromatography. The EPR spectrum of the iron-sulfur protein with g-values at 2.01, 1.94 and 1.89 was well resolved up to 200 K which is unusual for an iron-sulfur protein. Analyses confirmed a center with two iron and two labile sulfur atoms in the protein. By measuring the effect of oxidation-reduction potential on the EPR signal amplitude, midpoint potentials at pH 7.2 were determined both for the purified ironsulfur protein, +75 (±5) mV, and in prepared mitochondrial outer membrane, +62 (±6) mV. At pH 8.2 slightly lower values were indicated, +62 and 52 mV, respectively. The oxidation-reduction equilibrium involved a one electron transfer. A functional relationship to the rotenone-insensitive NADH-cytochrome c oxidoreductase in the mitochondrial outer membrane is suggested. Both this activity and the iron-sulfur center were sensitive to acidities slightly below pH 7 in contrast to the iron-sulfur centers of the inner membrane.  相似文献   

3.
On addition of NADH or NADPH to the mitochondrial outer membrane fraction from rat liver, an electron paramagnetic resonance (EPR) spectrum is observed which is characteristic of a protein, containing an iron-sulfur center. The g-values are 2.01, 1.94 and 1.89. Quantitation of the EPR absorption and analysis of the acid labile sulfur content suggest that the paramagnetic center contains two iron and two acid labile sulfur atoms. The concentration of the center in the outer membrane is about 0.5 nmoles/mg protein.  相似文献   

4.
Hexavalent chromium (Cr(VI)) compounds (e.g., chromates) are strong oxidants that readily enter cells, where they are reduced to reactive Cr species that also facilitate reactive oxygen species generation. Recent studies demonstrated inhibition and oxidation of the thioredoxin system, with greater effects on mitochondrial thioredoxin (Trx2). This implies that Cr(VI)-induced oxidant stress may be especially directed at the mitochondria. Examination of other redox-sensitive mitochondrial functions showed that Cr(VI) treatments that cause Trx2 oxidation in human bronchial epithelial cells also result in pronounced and irreversible inhibition of aconitase, a TCA cycle enzyme that has an iron-sulfur (Fe-S) center that is labile with respect to certain oxidants. The activities of electron transport complexes I and II were also inhibited, whereas complex III was not. Electron paramagnetic resonance (EPR) studies of samples at liquid helium temperature (10K) showed a strong signal at g=1.94 that is consistent with the inhibition of electron flow through complex I and/or II. A signal at g=2.02 was also observed, which is consistent with oxidation of the Fe-S center of aconitase. The g=1.94 signal was particularly intense and remained after extracellular Cr(VI) was removed, whereas the g=2.02 signal declined in intensity after Cr(VI) was removed. A similar inhibition of these activities and analogous EPR findings were noted in bovine airways treated ex vivo with Cr(VI). Overall, the data support the hypothesis that Cr(VI) exposure has deleterious effects on a number of redox-sensitive core mitochondrial proteins. The g=1.94 signal could prove to be an important biomarker for oxidative damage resulting from Cr(VI) exposure. The EPR spectra simultaneously showed signals for Cr(V) and Cr(III), which verify Cr(VI) exposure and its intracellular reductive activation.  相似文献   

5.
The iron-sulfur protein present in the mitochondrial outer membrane has been partially purified from beef kidney cortex mitochondria by means of selective solubilization followed by DEAE-cellulose chromatography. The EPR spectrum of the iron-sulfur protein with g-values at 2.01, 1.94 and 1.89 was well resolved up to 200 K which is unusual for an iron-sulfur protein. Analyses confirmed a center with two iron and two labile sulfur atoms in the protein. By measuring the effect of oxidation-reduction potential on the EPR signal amplitude, midpoint potentials at pH 7.2 were determined both for the purified iron-sulfur protein, +75 (+/- 5) mV, and in prepared mitochondrial outer membrane, +62 (+/- 6) mV. At pH 8.2 slightly lower values were indicated, +62 and 52 mV, respectively. The oxidation-reduction equilibrium involved a one electron transfer. A functional relationship to the rotenone-insensitive NADH-cytochrome c oxidoreductase in the mitochondrial outer membrane is suggested. Both this activity and the iron-sulfur center were sensitive to acidities slightly below pH 7 in contrast to the iron-sulfur centers of the inner membrane.  相似文献   

6.
Ferralterin, an iron-sulfur protein identified earlier in chloroplasts and cyanobacteria, was purified to homogeneity from spinach leaves and Nostoc muscorum cells. When isolated from both sources, ferralterin showed a molecular weight of about 28,000 and was comprised of three subunits: one of molecular weight 12,000 and two, apparently identical, of molecular weight 7000. Based on the Lowry method of protein estimation, ferralterin contained approximately 3 g atoms each of nonheme iron and acid-labile sulfide per mole. The iron-sulfur cluster of ferralterin showed unusual redox and electron paramagnetic resonance (EPR) properties. Ferralterin was EPR silent as isolated and did not show an EPR signal on addition of reductants such as sodium dithionite or on exposure to illuminated chloroplast membranes. These reducing conditions also had no significant effect on the absorption spectrum of isolated ferralterin. The ferralterin iron-sulfur cluster was oxidized selectively by ferricyanide and showed a midpoint redox potential of +410 mV. Ferricyanide-oxidized ferralterin was characterized by a low-temperature EPR signal with g values of 2.10, 2.05, and 2.00 (spinach) and 2.09, 2.04, and 1.98 (Nostoc). When oxidized by ferricyanide, the iron-sulfur cluster could be reduced by a variety of reductants, including illuminated chloroplast membranes. The results are consistent with the conclusion that, like several other iron-sulfur enzymes (aconitase, glutamine phospho-ribosylpyrophosphate amidotransferase, hydrogenase), ferralterin achieves its catalytic effect via an active group independently of a redox change in the iron-sulfur chromophore.  相似文献   

7.
Oriented multilayers made from beef heart and yeast mitochondria and submitochondrial particles were studied using electron paramagnetic resonance. EPR signals from membrane-bound iron-sulfur clusters and from a spin-coupled ubiquinone pair are highly orientation dependent, implying that these redox centers are fixed in the membrane at definite angles relative to the membrane plane. Typically the iron-iron axis (gz) of the binuclear iron-sulfur clusters is in the membrane plane. This finding is discussed in terms of the protein structure. the tetranuclear iron-sulfur clusters can have their gz axis either perpendicular or parallel to the membrane plane, but intermediate orientation was not observed.  相似文献   

8.
Single-ion channel activities were measured after reconstitution of potato tuber mitochondrial inner membranes into planar lipid bilayers. In addition to the recently described large-conductance Ca(2+)-activated potassium channel activity (Koszela-Piotrowska et al., 2009), the following mitochondrial ion conductance pathways were recorded: (i) an ATP-regulated potassium channel (mitoK(ATP) channel) activity with a conductance of 164+/-8pS, (ii) a large-conductance Ca(2+)-insensitive iberiotoxin-sensitive potassium channel activity with a conductance of 312 pS+/-23, and (iii) a chloride 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-inhibited channel activity with a conductance of 117 pS+/-4. In isolated non-phosphorylating potato tuber mitochondria, individual and combined potassium channel activities caused significant (up to 14mV) but not collapsing K(+)-influx-induced membrane potential depolarisation. Under phosphorylating conditions, the coupling parameters were unchanged in the presence of high K(+) level, indicating that plant K(+) channels function as energy-dissipating systems that are not able to divert energy from oxidative phosphorylation. A potato tuber K(+) channel that is ATP-, 5-hydroxydecanonic acid-, glybenclamide-inhibited and diazoxide-stimulated caused low cation flux, modestly decreasing membrane potential (up to a few mV) and increasing respiration in non-phosphorylating mitochondria. Immunological analysis with antibodies raised against the mammalian plasma membrane ATP-regulated K(+) channel identified a pore-forming subunit of the Kir-like family in potato tuber mitochondrial inner membrane. These results suggest that a mitoK(ATP) channel similar to that of mammalian mitochondria is present in potato tuber mitochondria.  相似文献   

9.
6-Benzoylaminopurine (BOAP) inhibits succinate oxidation atthe level of complex II (succinate-ubiquinone reductase) inthe respiratory chain of plant mitochondria. In order to identifyits site of action, the effects of BOAP on mitochondrial membranesof potato tubers were studied using electron paramagnetic resonance(EPR), and compared to those of thenoyltrifluoroacetone (TTFA),an inhibitor of complex II. Under aerobic conditions, BOAP inducedno change in the EPR signal of the Fe-S center S-3 of succinatedehydrogenase (SDH), unlike TTFA which decreased the heightand modified the spectrum of the signal. In the presence offerricyanide (FeCN), BOAP weakly enhanced the S-3 signal whereasTTFA changed only its shape but not its height. Under anaerobicconditions, center S-1 was completely reduced in the presenceof BOAP, while in the presence of TTFA center S-1 was less reducedthan in the control, and the center S-3 signal was not differentfrom that under aerobic conditions. Reoxidation of anaerobicpreparations was obtained by O2 or FeCN addition. Oxygen wasineffective as an oxidant in the presence of either inhibitor,but a partial reoxidation of center S-3 was obtained with FeCNin the presence of BOAP. These observations point to two differentsites for TTFA and BOAP. Both inhibitors act on the O2 sideof center S-3, BOAP interfering with the environment of theFe-S cluster of S-3, while TTFA would act on the cluster itself. (Received March 29, 1996; Accepted July 9, 1996)  相似文献   

10.
Two distinct Hipip type iron-sulfur centers are present in pigeon heart mitochondria. These two can be distinguished by their EPR spectra which differ in the detailed line shape, field position and temperature dependence. These two seem to correspond to Center S-3, and an iron-sulfur protein purified by Ruzicka and Beinert. They exhibit different thermodynamic behavior and topographical location in the mitochondrial membrane.  相似文献   

11.
The permeability of mitochondria from pea (Pisum sativum L. var Kleine Rheinländerin) leaves, etiolated pea shoots, and potato (Solanum tuberosum) tuber for malate, oxaloacetate, and other dicarboxylates was investigated by measurement of mitochondrial swelling in isoosmolar solutions of the above mentioned metabolites. For the sake of comparison, parallel experiments were also performed with rat liver mitochondria. Unlike the mammalian mitochondria, the plant mitochondria showed only little swelling in ammonium malate plus phosphate media but a dramatic increase of swelling on the addition of valinomycin. Similar results were obtained with oxaloacetate, maleate, fumarate, succinate, and malonate. n-Butylmalonate and phenylsuccinate, impermeant inhibitors of malate transport in mammalian mitochondria, had no marked inhibitory effect on valinomycin-dependent malate and oxaloacetate uptake of the plant mitochondria. The swelling of plant mitochondria in malate plus valinomycin was strongly inhibited by oxaloacetate, at a concentration ratio of oxaloacetate/malate of 10−3. From these findings it is concluded: (a) In a malate-oxaloacetate shuttle transferring redox equivalents from the mitochondrial matrix to the cytosol, malate and oxaloacetate are each transported by electrogenic uniport, probably linked to each other for the sake of charge compensation. (b) The transport of malate between the mitochondrial matrix and the cytosol is controlled by the oxaloacetate level in such a way that a redox gradient can be maintained between the NADH/NAD systems in the matrix and the cytosol. (c) The malate-oxaloacetate shuttle functions mainly in the export of malate from the mitochondria, whereas the import of malate as a respiratory substrate may proceed by the classical malate-phosphate antiport.  相似文献   

12.
Previous M?ssbauer and electron nuclear double resonance (ENDOR) studies of oxidized hydrogenase I (bidirectional) from Clostridium pasteurianum W5 demonstrated that this enzyme contains two diamagnetic [4Fe-4S]2+ clusters and an iron-sulfur center of unknown structure and composition that is characterized by its novel M?ssbauer and ENDOR properties. In the present study we combine ENDOR and EPR measurements to show that the novel cluster contains 3-4 iron atoms. In addition, we have used EPR and ENDOR spectroscopies to investigate the effect of binding the competitive inhibitor carbon monoxide to oxidized hydrogenase I, using 13C-labeled CO and enzyme isotopically enriched in 57Fe. Treatment of oxidized enzyme with CO causes the g-tensor of the paramagnetic center to change from rhombic to axial symmetry. The observation of a 13C signal by ENDOR spectroscopy and analysis of the EPR broadening show that a single CO covalently binds to the paramagnetic center. The 13C hyperfine coupling constant (Ac approximately equal to 21 MHz) is within the range observed for inorganic iron-carbonyl clusters. The observation of 57Fe ENDOR signals from two types of iron site ([A1c] approximately 30-34 MHz; [A2c] approximately 6 MHz) and resolved 57Fe hyperfine interactions in the EPR spectrum from two nuclei characterized by [A1c] confirm that the iron-sulfur cluster remains intact upon CO coordination, but show that CO binding greatly changes the 57Fe hyperfine coupling constants.  相似文献   

13.
Electron paramagnetic resonance (EPR) spectra of complex biological systems contain information about the paramagnetic centres present. Retrieving such information is important since paramagnetic species are common intermediates of all redox reactions in both normal and abnormal metabolism. However, it is often difficult to determine the nature and content of all paramagnetic species present because the EPR signals from individual centres overlap. Here, we apply our deconvolution method based on spectra subtraction with variable coefficient to quantify individual paramagnetic components of human muscle biopsies taken from critically ill patients with severe sepsis. We use low temperature EPR spectroscopy to identify and quantify nine different paramagnetic species in the tissue. These include the majority of the mitochondrial iron-sulfur centres and the first in vivo report of a mitochondrial radical assigned to a spin-coupled pair of semiquinones (SQ·-SQ·). We have previously demonstrated in these same muscle biopsies that biochemical assays of mitochondrial dysfunction correlate with clinical outcomes (D. Brealey, M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, M. Singer, Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360 (2002) 219-223.). Analysis of the paramagnetic centres in the muscle confirms and extends these findings: the (SQ·-SQ·) radical species negatively correlates with the illness severity of the patient (APACHE II score) and a decreased concentration of mitochondrial Complex I iron-sulfur redox centres is linked to mortality.  相似文献   

14.
Oriented multilayers made from beef heart and yeast mitochondria and submitochondrial particles were studied using electron paramagnetic resonance. EPR signals from membrane-bound iron-sulfur clusters and from a spin-coupled ubiquinone pair are highly orientation dependent, implying that these redox centers are fixed in the membrane at definite angles relative to the membrane plane. Typically the iron-iron axis (gz) of the binuclear iron-sulfur clusters is in the membrane plane. This finding is discussed in terms of the protein structure. The tetranuclear iron-sulfur clusters can have their gz axis either perpendicular or parallel to the membrane plane, but intermediate orientation was not observed.  相似文献   

15.
Iron-sulfur centers in mitochondria prepared from Morris hepatomas with different growth rates were compared with those in host liver and nontumor-bearing rat liver mitochondria by EPR measurements (< 77° K). In the slow growing hepatoma 16, EPR signals from iron-sulfur centers located in the NADH dehydrogenase region were specifically diminished. In the rapidly growing hepatoma 7777, EPR signals of all the iron-sulfur centers showed considerably diminished intensity. In hepatoma 7800 having an intermediate growth rate, all iron-sulfur centers showed no change. Those changes in iron-sulfur centers correlated with observed respiratory activities of Morris hepatoma mitochondria. No general correlation was obtained between these parameters and the growth rate of the tumors.  相似文献   

16.
Electron paramagnetic resonance (EPR) spectra of complex biological systems contain information about the paramagnetic centres present. Retrieving such information is important since paramagnetic species are common intermediates of all redox reactions in both normal and abnormal metabolism. However, it is often difficult to determine the nature and content of all paramagnetic species present because the EPR signals from individual centres overlap. Here, we apply our deconvolution method based on spectra subtraction with variable coefficient to quantify individual paramagnetic components of human muscle biopsies taken from critically ill patients with severe sepsis. We use low temperature EPR spectroscopy to identify and quantify nine different paramagnetic species in the tissue. These include the majority of the mitochondrial iron-sulfur centres and the first in vivo report of a mitochondrial radical assigned to a spin-coupled pair of semiquinones (SQ*-SQ*). We have previously demonstrated in these same muscle biopsies that biochemical assays of mitochondrial dysfunction correlate with clinical outcomes (D. Brealey, M. Brand, I. Hargreaves, S. Heales, J. Land, R. Smolenski, N.A. Davies, C.E. Cooper, M. Singer, Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360 (2002) 219-223.). Analysis of the paramagnetic centres in the muscle confirms and extends these findings: the (SQ*-SQ*) radical species negatively correlates with the illness severity of the patient (APACHE II score) and a decreased concentration of mitochondrial Complex I iron-sulfur redox centres is linked to mortality.  相似文献   

17.
A procedure was developed to separate and partially purify two NAD(P)H dehydrogenases from the inner membrane of cauliflower (Brassica oleracea L.) mitochondria. The procedure used Triton X-100 extraction followed by (NH4)2SO4 precipitation and gel filtration (Sepharose G-200 column) chromatography. The first dehydrogenase fraction (which eluted in the column void volume) was specific for NADH, was stimulated by KCl addition, and was inhibited by acidic pH, sulfhydryl reagents, and elevated temperature. This fraction contained two major polypeptides with molecular weights of about 57,600 and 32,600 daltons. The fraction exhibited electron paramagnetic resonance (EPR) signals associated with a reduced (ferredoxin-type) iron-sulfur center.

A second dehydrogenase fraction was eluted from the column after removal of the first dehydrogenase. This fraction oxidized NADH and NADPH, was stable at high temperatures, and had a broad pH optima that ranged from 6.0 to 7.8. Although it was relatively insensitive to additions of monovalent and divalent cations, its activity was sensitive to incubation with sulfhydryl reagents. The second dehydrogenase fraction contained five major polypeptides and lacked the iron-sulfur protein EPR signals shown by the first dehydrogenase fraction.

The dehydrogenase fractions represent three potential sites of entry to mitochondrial electron transport; two sites for NADH and a third site for NADPH.

  相似文献   

18.
A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster.  相似文献   

19.
Purified spinach nitrite reductase, a protein that contains siroheme, is characterized by absorption maxima in the visible region at 385 and 573 nm. On addition of the substrate nitrite, the bands shift to 360 and 570 nm. Dithionite also causes shifts in the maxima of the visible absorption region. Electron paramagnetic resonance studies show that the untreated enzyme contains a high-spin Fe3+ heme and that the addition of cyanide, an inhibitor that is competitive with nitrite, results in a spin-state change of the heme. Electron paramagnetic resonance analysis of the enzyme in the presence of dithionite or dithionite plus cyanide indicates the presence of a reduced iron-sulfur center with rhombic symmetry (g-values of 2.03, 1.94, and 1.91). In contrast, when the enzyme is treated with dithionite plus nitrite, the EPR spectrum of an NO-heme complex (g-values of 2.07 and 2.00) is observed. The presence of an iron-sulfur center has also been confirmed by chemical analyses of the nonheme iron and acid-labile sulfide in nitrite reductase. These results are discussed in terms of a mechanism for nitrite reduction that involves electron transfer between the iron-sulfur center and siroheme.  相似文献   

20.
Han D  Canali R  Garcia J  Aguilera R  Gallaher TK  Cadenas E 《Biochemistry》2005,44(36):11986-11996
Aconitases are iron-sulfur cluster-containing proteins present both in mitochondria and cytosol of cells; the cubane iron-sulfur (Fe-S) cluster in the active site is essential for catalytic activity, but it also renders aconitase highly vulnerable to reactive oxygen and nitrogen species. This study examined the sites and mechanisms of aconitase inactivation by peroxynitrite (ONOO-), a strong oxidant and nitrating agent readily formed from superoxide anion and nitric oxide generated by mitochondria. ONOO- inactivated aconitase in a dose-dependent manner (half-maximal inhibition was observed with approximately 3 microM ONOO-). Low levels of ONOO- caused the conversion of the Fe-S cluster from the [4Fe-4S]2+ form to the inactive [3Fe-4S]1+ form with the loss of labile iron, as confirmed by low-temperature EPR analysis. In the presence of the substrate, citrate, 66-fold higher concentrations of ONOO- were required for half-maximal inhibition. The protective effects of citrate corresponded to its binding to the active site. The inactivation of aconitase in the presence of citrate was due to ONOO--mediated cysteine thiol loss and tyrosine nitration in the enzyme as shown by Western blot analyses. LC/MS/MS analyses revealed that ONOO- treatment to aconitase resulted in nitration of tyrosines 151 and 472 and oxidation to sulfonic acid of cysteines 126 and 385. The latter is one of the three cysteine residues in aconitase that binds to the Fe-S cluster. All other modified tyrosine and cysteine residues were adjacent to the binding site, thus suggesting that these modifications caused conformational changes leading to active-site disruption. Aconitase cysteine thiol modifications other than oxidation to sulfonic acid, such as S-glutathionylation, also decreased aconitase activity, thus indicating that glutathionylation may be an important means of modulating aconitase activity under oxidative and nitrative stress. Taken together, these results demonstrate that the Fe-S cluster in the active site, cysteine 385 bound to the Fe-S cluster, and tyrosine and cysteine residues in the vicinity of the active site are important targets of oxidative and/or nitrative attack, which is selectively controlled by the mitochondrial matrix citrate levels. The mechanisms inherent in aconitase inactivation by ONOO- are discussed in terms of the mitochondrial matrix metabolic and thiol redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号